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ABSTRACT

Self-supervised contrastive learning is increasingly acknowledged
as an effective approach to mitigate the challenges posed by lim-
ited annotated data. We introduce a two-stage methodology that ex-
tends current approaches, targeting the downstream task of multi-
label classification in hyperspectral remote-sensing imagery. In the
initial stage, we employ a contrastive learning approach to train a
base encoder and a projection neural network, thereby learning data
patterns without relying on annotations. The effectiveness of the en-
coder is bolstered as it is guided by a contrastive loss function to
maximize the similarity between the generated embeddings. In the
second stage, we harness the power of the pre-trained encoder to
channel its hidden representations into a multi-label classifier. Our
empirical validation demonstrate that this method surpasses fully su-
pervised alternatives. The observed improvements are attributed to
the strategy of training the encoder alongside the classifier, thereby
refining its adaptability to the feature space of the classifier.

Index Terms— Hyperspectral imagery, remote sensing, self-
supervised learning, contrastive learning, multi-label classification,
deep learning

1. INTRODUCTION

The generalisation capacity of deep learning methods relies heav-
ily on the availability of large, carefully labelled datasets. However,
manual annotation of data is an expensive, time-consuming, and te-
dious process that often lacks domain expertise, leading to poten-
tial issues with annotation quality. These limitations have motivated
research in the domain of self-supervised learning (SSL) [1} 2]. It
leverages the learning of useful representations from unlabelled data
depending solely on the intrinsic patterns in the data. Those rep-
resentations are then used in downstream tasks that usually require
large sets of labelled data for a successful training. Unlike general
unsupervised learning methods, which focus on discovering hidden
patterns in unlabelled data without explicit guidance, self-supervised
learning methods take a different approach. They create pretext tasks
derived from the data itself to generate labels. This allows the mod-
els to learn more targeted and task-specific representations.
Contrastive learning (CL) has a long standing history [3} 14} [Sl],
but its recent application in self-supervised representation learning
for computer vision [6] has drawn significant attention. It is a tech-
nique that compares input data with similar or contrasting data to
derive representations for a specific task. A crucial aspect of CL
is the design of a contrastive loss function [7] that encourages the
algorithm to learn corresponding representations for similar inputs
and distinct representations for dissimilar inputs. When applied in
a self-supervised manner, CL operates on unlabelled datasets to un-
cover and learn representations of the data based on its inherent char-
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Fig. 1. Two-stage method: Stage one trains an encoder in a con-
trastive manner on unlabelled data, maximizing agreement between
hidden representations of two transformations from the same patch
sample. Stage two fine-tunes the pre-trained encoder with a classifier
on labelled samples for multi-label classification

acteristics. The loss function encourages the model to learn repre-
sentations capable of distinguishing between two perspectives of the
same input sample. In self-supervised contrastive learning, a pretext
task is employed, involving the generation of pairs of augmented
views of the same data sample (positive pairs) and contrasting them
with views of different samples (negative pairs), thereby facilitating
the learning of insightful representations from the data. The learned
weights can then be transferred to the final intended task.

Images, typically in RGB format, have been at the heart of the
self-supervised CL research in the literature. However, one inter-
esting avenue of research would be to extend this application to hy-
perspectral remote sensing images characterised by a deep spectral
extent. Hyperspectral imagery captures the reflectance of objects
across contiguous wavelength bands of the electromagnetic spec-
trum resulting in a hypercube with both spatial and spectral dimen-
sions. Each pixel in this imagery represents a unique combination of
colour and wavelength. In the field of remote sensing, those images
are used to map the distribution of land cover categories, such as
forest, crops and urban areas. Deep learning has shown considerable
promise in the field of hyperspectral image (HSI) analysis for re-
mote sensing applications, particularly over the last decade [8}19}|10].
This is because deep models such as Convolutional Neural Networks
(CNNS) and Recurrent Neural Networks (RNNs) have shown ex-
ceptional ability to automatically learn relevant features from high-
dimensional data. Hyperspectral images possess both high spatial



and spectral dimensionality, offering an abundance of information
that can benefit deep learning algorithms. However, this character-
istic also brings forth complex challenges for deep learning method-
ologies designed for HSI analysis including computational complex-
ity and the “curse of dimensionality,” which can adversely affect
model training and performance [11} 112} [13]. These challenges
arise from several factors such as: 1) the scarcity of labelled data,
2) the high sensitivity to network architectures, and 3) the employed
training schemes.

Notwithstanding the aforementioned factors self-supervised CL
emerges as a viable alternative to supervised deep learning meth-
ods in the domain of hyperspectral imagery analysis. In this paper,
we propose a relatively deep, yet simple architecture of an encoder
(feature extractor) and a classifier. We employ a self-supervised con-
trastive learning method to train the encoder to provide high-quality
data representations to the classifier. With this enhanced input, the
classifier is better equipped to accurately make multi-label predic-
tions for patches of hyperspectral remote sensing images. We adopt
the concept followed in [14] while using a different architecture and
focusing on geometric transformations to generate correlated views
of the input samples. We compare the performance of the classifier
in [[15], which analyses three supervised training schemes to train
neural networks for HSI multi-label classification. The contributions
of our paper are as follows:

1) We introduce a self-supervised contrastive learning approach
for feature extraction in hyperspectral remote sensing data that
reduces the need for labelled input samples. In contrast to prior
works that rely on intricate architectures such as varying depths
of ResNet [16], DenseNet [17]], AlexNet [18] or Siamese Net-
works [19] our method engages a straightforward encoder archi-
tecture. Despite this streamlined simplicity, the encoder effectively
generates rich feature representations that when fine-tuned with a
classifier, surpasses existing state-of-the-art methods.

2) While prior studies have conducted multi-label predictions on
hyperspectral remote sensing images using patch datasets [15], to the
best of our knowledge, the implementation of a self-supervised con-
trastive learning approach towards this particular task has not been
previously addressed.

The remaining of this paper is organised as follows: Section [2]
positions our research w.r.t. existing efforts. Section [3]describes the
proposed method. In Section[d] we validate our method on HSI patch
datasets. Finally, we put forward our concluding remarks and future
work prospects in Section[3}

2. RELATED WORK

Our work lies at the intersection of two key dimensions.

Self-supervised contrastive learning (SSCL). It is a technique
to learn representations of data without labels. The main idea be-
hind SSCL is to draw together representations of augmented views
of the same sample while distancing hidden representations derived
from different samples [20]. It is applied to various tasks such as
image and video classification [21], object detection [22], natural
language processing [23], and many other domains. In [14], a sim-
ple framework for contrastive learning of visual representations is
proposed, SimCLR, which is independent of the underlying archi-
tecture. Among the significant findings of this work is the pivotal
role that strong data augmentation plays in contrastive prediction
tasks. Moreover, using a non-linear transformation between the hid-
den representation and the contrastive loss improves the quality of
the learned representations.

Similarly, we position our research in the same territory to learn
the relationships hidden within the remote sensing hyperspectral
data. We do this by establishing a pretext task of learning a gen-
eral representation/embedding without engaging annotations. For
that, we train an encoder to produce similar representations for the
augmented views of the same HSI patch sample.

Self-supervised Hyperspectral image analysis. Deep learning
methods have demonstrated considerable success in hyperspectral
image analysis. However, the lack of sufficient labelled training data
remains a significant challenge, as it can result in overfitting and
limited generalisation of the models. One approach to overcome this
challenge is by constructing deep learning models for hyperspec-
tral image classification that are specifically designed to work with
a limited number of labelled samples [24]. While “few-shot” classi-
fication can significantly reduce the time and labor required for data
collection and labeling, these models are still susceptible to overfit-
ting and limited generalisation. [25] explores the use of supervised
contrastive learning (SCL) as a pre-training strategy for HSI clas-
sification. In this approach, a feature encoder is pre-trained within
a supervised framework using a combination of positive and nega-
tive samples, optimising the model parameters in a pairwise manner.
However, the scarcity of labelled data remains a persistent challenge.

Alternatively, self-supervised learning in HSI analysis holds
promise for surpassing other techniques by enabling representation
learning independently of labelled data. [26] introduces a contrastive
self-supervised learning (CSSL) algorithm based on Siamese net-
works [19]. This approach extracts features from pairs of samples
and fine tunes a classification model with labelled data for pixel-
level, single-label classification. Considering the abundance of
unlabelled data, [27]] proposes a contrastive learning method for
HSI classification. The approach uses a large number of unlabelled
samples and employs data augmentation techniques. [28|] proposes
an unsupervised feature learning method based on autoencoders and
contrastive learning. The method aims to extract better features for
pixel-level hyperspectral image classification. In [29]], hyperspectral
change detection is addressed through a self-supervised hyperspec-
tral spatial-spectral understanding network (HyperNet). The latter
achieves pixel-wise feature representation without pixel-level an-
notations. To address the limited availability of labelled pixels in
hyperspectral remote sensing images, [30] proposes an architecture
that leverages cross-domain convolutional neural networks. This
architecture incorporates shared parameters to learn representations
across different hyperspectral datasets with varying spectral charac-
teristics and no-pixel level annotations.

Similar to the preceding works, our research focuses on the self-
supervised contrastive learning technique to perform hyperspectral
image analysis. However different from the above, the downstream
task we aim to achieve is that of patch-level, multi-label prediction.

3. MODEL DESIGN AND DESCRIPTION

Figure [T] illustrates our two-stage methodology. In the first stage,
we employ contrastive learning to train an encoder, ensuring that
augmented views of the same input sample are mapped closely in
the latent space. This is achieved by mapping each augmented view
through the encoder to generate intermediate representations. These
are then projected into a vector space using a neural network with
two fully-connected layers, where a contrastive loss is applied to
fine-tune the similarity. In the second stage, the projection network
is removed, and the pre-trained encoder is integrated with a classifier.
The entire architecture is then fine-tuned using labelled samples (see
Section[f.2). As result, the encoder yields low-dimensional feature



representations, while the classifier discriminates among them.

3.1. Model Architecture

Contrastive Learning Feature Extraction Network. It comprises
several components. The augmentation component applies random
vertical and horizontal transformations to an input sample, creating
two views known as a positive pair. Each view passes through a
network consisting of fully connected layers with Rectified Linear
Unit (ReLU) activation and dropout layers. This network component
serves as the encoder, responsible for extracting informative features
from the two augmented views of the same input sample and map-
ping them into two hidden (intermediate) representations h; and ha.
The mapping function is defined as h;=f (W}, - ; + by) where x;
represents an augmented view of the input samples X (M = the
total number of patches), and W}, and b, being the weights and the
bias of the encoder, respectively. The encoder will preserve the spa-
tial dimension of patches yet it will reduce the spectral dimension.

The projection head, is a neural network composed of two fully-
connected layers with ReLU and dropout layers. Its purpose is to
project the hidden representations, h; and hso , into another dimen-
sional space represented by z; and z2. The mapping function is
defined as z; = g(W. - h; + b,) where z; denotes the vector rep-
resentation of the intermediate representation, and W, and b, repre-
sent the weights and the bias of the projection network, respectively.
During training, the contrastive loss function will direct the weights
to update towards maximising the similarity between the two vector
representations (z). This forces the encoder to produce two similar
hidden representations (h) for the augmented views generated from
the same sample. Ultimately, enabling it to learn relevant features
present in the input data. In this context, we employ the Normal-
ized Temperature-scaled Cross Entropy Loss (NT-Xent) [31} 132]], as
our contrastive loss function. The objective of NT-Xent (Eq.[I) is
to increase the similarity between the two augmented views (posi-
tive pair), while simultaneously asserting their dissimilarity with the
negatives samples. The negative samples comprise the remaining
augmented views generated from the other input samples within the
batch. Following the approach in [14]], let N represents the batch
size, given a positive pair the remaining 2(/N —1) views serve as neg-
ative pairs. Prior to starting the training process for the contrastive
learning model, we carefully examined the patches in our dataset
removing the duplicates that appeared within each batch.

eap(sim(zi, )/ T)
lij = —log —5x ,
Zk:l l[k?gi]exp(szm(zi, z)/T)

ey

In Eq. sim(zi, z;) is the cosine similarity H—jﬁ’ N rep-
resents the batch size and since contrastive learning involves two
views of each patch, there are 2N data points. The function 1., €
{0, 1} evaluates to 1 if k is not equal to ¢ and 0 otherwise. The tem-
perature scale 7" is a constant to scale the cosine similarity values
ensuring they are not too large nor too small. The similarity between
the augmented samples is calculated pairwise for (4, j) projections,
encompassing all 2NV projections within the entire batch. The overall
loss function, used for back-propagation is the average taken across
all positive pairs in the batch:

N
1
Loss = 5 ;[1(21@ —1,2k) 4 1(2k, 2k — 1)] 2)

Downstream network. After training the base encoder using a
contrastive learning approach, we proceed to utilise it for the classi-

fication task. At this point, we combine the trained encoder with a
classifier. We retain the same architecture of the classifier that was
utilised in [[15], which is designed to perform patch-level classifica-
tion on hyperspectral data, with fully-connected layers, non-linear
activation function and dropout layers. The classifier takes the hid-
den representation h;, of the input sample, generated by the base
encoder and is trained to predict the class(es) associated with each
sample. Towards this end, we employ the Binary cross Entropy with
Logits Loss (Eq. [3) as the objective function of the classification
model.
Ce(@,y) = Le = {lie, s Ine} 3)
where n indicates the sample index within the batch, and c rep-
resents the class label. The individual loss I,,. for each sample n
and class c is:

ln,c = _wn,c[pcyn,c . log‘ff@n,c) + (1 - y”yﬁ)'
log(1 — o (gn,c))]

In this equation, p. is the weight of the positive outcome for
class ¢, Yn,. and §n . denote the ground truth and predicted labels,
respectively. o(gn, c) represents the sigmoid activation applied to
the predicted label and w,, . represents the weight for sample n and
class c. The label space is defined as y = {0,1}°.

@

4. EXPERIMENTS

In this section, we present the results achieved from our experiments.
We utilise two publicly available datasets, Pavia University (PaviaU)
and Salinas [33] each of size X € R™¥*, with h,w, and b repre-
senting the height, the width, and the number of spectral bands, re-
spectively. The dimensions of the PaviaU dataset are 610x340x103
with 9 classes along with a background class. The dimensions of
the Salinas dataset are 512x217x204 with 16 classes along with
a background class. From those datasets, we extract patches of size
p € R" ¥ *b_thyg reducing the spatial dimension while preserving
the spectral bands. The resulting patch has a size of (3, 3, bands).
We assign multiple labels to these patches to indicate the presence
of different classes. The PaviaU multi-label patches dataset exhibits
complexity and diversity with 55% of the patches having labels that
correspond to mixed classes. In comparison, the Salinas dataset has
21% of patches with mixed class labels.

4.1. Implementation Details

The contrastive based-model was trained using unlabelled dataset
comprising patches of remote sensing scenes. Geometric transfor-
mations including horizontal and vertical flips, generated two views
of each input sample. After training the base model, the projection
head was removed and a classifier was attached. The new model was
trained on the same datasets after associating the hidden representa-
tions with the multi-labels. Z-score normalization was applied to the
input data. For training the base encoder, the data was split into 90%-
10% train and validation sets. For training the classifier, the data was
split into train, valid and test sets in the ratio of ~ 80%, 10% and
10% respectively. We used Adam optimisation [34] and employed
StepLR learning rate scheduling technique to decay the learning rate
by v=0.9 every 10 epochs. Batch size and epochs were carefully
selected to optimise the performance of each baseline.

4.2. Performance across different training schemes

In this experiment, we conducted patch-level, multi-label classifica-
tion of HSI patches. For that purpose we trained the classifier in con-



junction with the CL-based encoder and evaluated the performance
under two scenarios: 1) CL-freeze: the layers of the base encoder
were frozen and weights were not trainable. 2) CL-tune: The layers
of the base encoder were not frozen, allowing the weights to retrain.
Performance is reported in terms of average accuracy metric [35].
In the subsequent analysis, we compare the results with those
obtained from employing three different schemes, described in [15].
1) Iterative scheme where the autoencoder and classifier function as
separate architectures with distinct objectives. It bears resemblance
to the iterative training employed in adversarial models. 2) Joint
scheme [36]], the autoencoder and classifier are merged to a unified
algorithm. 3) Lastly, in the Cascade scheme [37]], an autoencoder is
trained independently to reconstruct the input and subsequently, the
encoder is fine-tuned with a classifier. All schemes exhibit a com-
parable encoder architecture, featuring a hidden layer of 32 neurons.
The classifier architecture is also similar, but the output layer is ad-
justed to accommodate the varying number of classes in each dataset.
No direct comparison was conducted with contrastive learning meth-
ods for HSI in the literature. Given their engineered design for pixel-
level, single-label classification task, adapting these methods for our
patch-level, multi-label classification task would require extensive
modifications. In Table[I] our method shows superior performance

Table 1. Multi-label Classifier: model accuracy performance

CL-freeze CL-tune Iterative Joint Cascade
PaviaU  70.56% 87.87% 84.03% 86.14% 83.50%
Salinas  74.90% 88.86% 87.61% 86.40% 86.47%

compared to other schemes when the CL-based encoder is retrained
with the classifier (CL-tune). Those results are taken from the test
set. On PaviaU, the improved performance ranged from 1.73% to
4.37%. For Salinas this improvement ranged from 1.25% to 2.46%.
Considering the complexity and diversity of the mixed patches in
the PaviaU dataset, it can be concluded that the contrastive learning
technique is particularly well-suited for modeling such data, espe-
cially given its limited size. Notably, the CL-tune variant outper-
forms the CL-freeze variant by a significant margin of 17.31% and
13.98% on the PaviaU and Salinas, respectively. This suggests that
during the retraining process, the weights of the encoder update to
better align with the features learned by the classifier. These features
capture the relevant information the classifier uses for label predic-
tion. Feedback in terms of prediction error is then back-propagated
to the earlier layers of the model, namely those of the encoder. This
scenario offers the advantage of using the trained weights of the base
encoder as a better initialization point for learning/updating the rep-
resentations of the base encoder.

In addition to outperforming the supervised training schemes,
the CL-tune scheme exhibits a similar computational profile. As in-
dicated in Table[2] the CL-fune-based classifier has fewer trainable
parameters compared to the supervised Joint training scheme. Con-
sequently, this results in reduced computational requirements.

Table 2. Computational requirements
PaviaU Salinas
Joint CL-tune Joint CL-tune
Trainable Params (1x10°)  6.23 6.21 6.25 6.22

Jorward/backwardpass (MB) 14.65 14.12 10.48 8.92
Params(MB) 24.92  24.85 25 24.89
Estimated Total size(MB) 40.31 39.93 36.43 35.01

4.3. Impact of the dimension of the hidden representation

In Section4.2|we utilised a contrastive learning base encoder to pro-
duce hidden representations of dimension 32. However, consider-
ing the patches datasets we are using, the encoder compressed the
spectral depth from (3x3x103) to (3x3x32) for PaviaU and from
(3%3%204) to (3x3x32) for Salinas. To investigate the potential
consequences of this spectral compression, we conducted an experi-
ment where we increased the hidden representation dimension to 64.
We then retrained our contrastive learning base encoder on patches
of both datasets. The pre-trained base encoder and the classifier were
subsequently fine-tuned on the labelled data employing either the
freezing or retraining of the encoder’s layers.

Table [3| presents the impact of the hidden representation dimen-
sion on performance. Increasing the size to 64 neurons resulted
in improvements in both the CL-tune and the CL-freeze schemes.
Specifically, the the CL-freeze showed improvement of ~4% and
2.3% for the PaviaU and the Salinas datasets, respectively. The self-
supervised contrastive learning approach allowed the encoder to bet-
ter capture similarities in the data by preserving more information
in the hidden representation. This reaffirms that contrastive learn-
ing methods effectively overcome limitations posed by the size and
complexity of the available data, as evidenced by the results obtained
from the PaviaU patches dataset.

Table 3. Multi-label Classifier: model accuracy performance w.r.t
higher dimensional hidden representation

CL-freeze CL-tune CL-freeze CL-tune

hidden layer 32 hidden layer 64
PaviaU 70.56%  87.87% 74.06%  88.45%
Salinas 74.90%  88.86% 77.13%  89.74%

5. CONCLUSION

This paper presents a two-stage method for training a multi-label
classifier for hyperspectral remote sensing images. The method,
employs a minimalist architecture bolstered by self-supervised
contrastive learning to pre-train a base encoder, thereby generat-
ing meaningful hidden representations that serve as input for the
classifier. Results indicate that our approach outperforms fully su-
pervised training methods in the task of multi-label classification on
hyperspectral remote sensing images. Ultilising both labelled and
unlabelled data, we fine-tune the classifier while capitalising on the
base encoder’s unsupervised training. This contrasts with end-to-end
supervised learning approaches which often suffer from overfitting
and yield minimal generalisation due to their reliance on limited
labelled datasets. Future research will aim to broaden the empir-
ical validation across diverse hyperspectral datasets, and explore
model interpretability for enhanced and more transparent decision-
making. Additionally, tackling spectral variability challenges in
hyperspectral unmixing through contrastive learning constitutes
another promising research avenue.
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