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ABSTRACT

We address the problem of unpaired geometric image-to-
image translation. Rather than transferring the style of an
image as a whole, our goal is to translate the geometry of an
object while preserving its appearance. Our model is trained
without the need for paired images. It performs all steps of
the shape transfer within a single model and without addi-
tional post-processing stages. Experiments on clothing-based
datasets show the effectiveness of the proposed method.

Index Terms— Image Generation, Image representation.

1. INTRODUCTION

Image-to-image translation (I2I) refers to the process of gen-
erating a novel image, which is similar to the original input
image in some ways yet different in others. Typically, the
input and output images belong to different domains, with
images in the same domain sharing a common characteristic,
e.g. going from photographs to paintings [14], from greyscale
to color images [3], or from virtual (synthetic) to real im-
ages [37]. Apart from direct applications [17], I2I has proven
valuable as a tool for data augmentation [4] or to learn a rep-
resentation for cross-domain image retrieval [7].

Traditionally, each domain is characterized by a different
appearance or style, and I2I is therefore sometimes referred to
as style transfer [14]. While the translation process may dras-
tically change the appearance or style compared to the input
image, in many cases the image semantics are to be preserved,
i.e. both input and output should represent the same objects
and scene. Moreover, usually also the image geometry, i.e.
the shape of the objects and the global image composition,
is preserved. We refer to this as the image content. Most
I2I methods build on top of Generative Adversarial Networks
(GANs) [6, 28, 27, 2] to learn the translation. While some
methods require paired data [12, 34, 36], some recent meth-
ods do not [28, 38]. To constrain complexity, the training
data is often restricted to a specific setting, e.g. close-ups of
faces [9, 36], people [25, 26], traffic scenes [22], etc.

In contrast to the traditional setting [26, 36], we focus on
the case where input and output do not belong to domains that
share the same geometrical information. Instead, we work
with one object-centric domain with standard shape and one
that is more contextualized with large shape variation (using
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Fig. 1. Translating a clothing item from a ”catalog” image domain to a
domain of individuals wearing the item (try-on task, top), and vice versa
(take-off task, bottom). Notice how for both tasks the appearance details of
the clothing items are preserved while their shape is effectively translated.

a reference image to provide the right context). For instance,
we go from a single piece of clothing to a person wearing
that same item (see Fig. 1). This setting is significantly more
challenging, as the image geometry changes. At the same
time, the image semantics (e.g. the clothing pattern) should
be preserved. Analogous to the term style transfer, we refer to
this as shape transfer. While a couple of recent works [26, 34,
36] have looked into this setting, to the best of our knowledge,
we are the first to propose a solution that does not require
paired data, across different domains, for training.

Our contributions are three-fold: i) We analyze the task
of unpaired shape translation. To the best of our knowl-
edge, we are the first doing this in an unpaired manner. ii) We
propose unpaired Shape Transformer, a method which does
not require paired data or post-processing refinements. In one
stream, an object with standard shape is transformed to a con-
textualized domain with arbitrary shape, and vice versa in the
other stream. iii) We achieve a one-to-many mapping via con-
text and structure information guidance.



2. RELATED WORK

In recent years I2I translation has received significant at-
tention [12, 38, 1, 24, 11]. Most of these efforts focus on
style/appearance transfer where the content depicted in the
input and output images has an aligned geometric structure.
[25, 26, 29, 9, 36] aim at the case when the geometry itself
is to be transferred. However, these methods focus on trans-
lation between similar domains (e.g. person-to-person and
face-to-face), with smaller variability compared to our setting
(person-to-clothing)

[34] propose one of the first methods addressing cross-
domain pixel-level translation. Their method semantically
transfers a natural image depicting a person (source domain)
to a clothing-item image corresponding to the clothing worn
by that person on the upper body (target domain), and vice
versa. Recently, [8, 32] propose two-stage warping-based
methods aimed at virtual try-on of clothing items. These
methods rely on paired data to learn to transfer the shape in
a first stage and then refine it in a second stage. In contrast,
we propose a more general method that utilizes the context
and shape guidance to perform translation across different do-
mains without any paired data. In addition, our method is able
to handle the full appearance-preserving translation, in both
directions, within a single model/stage.

Outside of the I2I literature, methods based on spatial
transformer networks (STN) [13, 21, 18] also aim at object-
level transformations. Different from them which assume
rigid transformations, with our method different pixel-level
transformations are possible as depicted in the training data.
This is desirable to handle articulated/deformable objects and
self-occlusions. Moreover, our method does not depend on
expensive pixel-level supervision as in [21].

3. METHODOLOGY

In this section, we describe our model using the clothing try-
on / take-off as an example. Our goal is to transfer the shape
information while keeping the appearance information, all
trained without access to paired data. For this, we propose the
asymmetric two-stream model shown in Fig. 2. The asymme-
try reflects the fact that one of the two domains (domain B) is
object-focused (e.g. catalog images of clothing items) while
the other one (domain A) shows the objects in context (e.g.
pictures of clothed persons).

Here, we use xA and xB to refer to images from domain A
and domain B respectively. xAB refers to images transferred
from domain A to domain B, and vice versa for xBA.

3.1. Assumptions
In previous works [8, 34], the try-on and take-off tasks are
solved in a supervised way, respectively. Here, we solve both
tasks in one model using unpaired data based on shared-latent
space and context-structure constraints. Shared-latent space

constraint. Similar to [11, 19, 24], we decompose the latent
space into a content space and a style space. Differently, we
assume that both content and style latent spaces can be shared
by the two domains. We use ZC

A and ZC
B to denote the content

space of domains A and B, and use ZS
A and ZS

B to denote the
style space of domain A and B, respectively. Note that the
style information is already shared between domain A and B
images, but the content information is not. Therefore, we use
one weight-sharing encoder ES

shared to obtain the shared style
space constraint, and two encoders, EC

A and EC
B , to achieve

the shared content space constraint. Context constraint. The
above shared-latent space constraints enable unpaired I2I and
work well for style transfer tasks [23, 19, 24]. Yet it is not
enough for geometry transfer when the output is multi-modal
(i.e. multiple possible outputs). Here, we propose to use
contextual guidance to constrain the output to be determinis-
tic, i.e. decompose the one-to-many mapping into one-to-one
mappings. In particular, for the try-on stream, we propose a
Fit-in module which combines the feature maps with the con-
text information. As to the take-off stream, we assume the
output is unimodal and directly use the adversarial learning to
learn the deterministic many-to-one mapping.

3.2. Network architecture
The model can be divided into try-on and take-off streams.
Try-on stream The catalog image xB first passes through the
domain B content encoder EC

B producing the content code zC
B

in the shared content space ZC
shared. In parallel, xB is also

encoded into a style code zS
B in the shared style space ZS

shared
by the shared style encoder ES

shared. To combine the con-
tent and style information in the decoder, we use adaptive
instance normalization (AdaIN) [10] layers for all residual
and up-sampling blocks. The AdaIN parameters pAdaIN are
dynamically computed by a multi-layer perceptron from the
style code zS

B to ensure the generated person image xBA has
the same style as xB.

AdaIN(z, γ, β) = γ
(z − µ(z))

δ(z)
+ β (1)

where z is the activation of the previous convolution layer.
µ and δ are the mean and standard deviation computed per
channel. Parameters γ and β are the output of the MLP of the
shared style encoding module.

During decoding, the content code zC
B concatenated with

the shape mask mA are fed to the decoder GA. There the con-
tent and style are fused by AdaIN and then fed to the Fit-in
module. The Fit-in module is designed to enforce the con-
text information constraint. We first estimate the bounding
box of the mask from the context image. Then, we resize and
align the up-sampled feature maps to this bounding box. Fi-
nally, this output is concatenated with the context image. The
main goal of this design is to integrate the context informa-
tion which helps the deterministic shape transform. The final
try-on image xBA is generated after the last convolution block.

In addition, we introduce an attention mechanism to both
generator and discriminator. We concatenate the mask mA
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Fig. 2. Proposed unpaired Shape Transformer (UST). The try-on and take-off streams are trained jointly with shared
style/content space constraints. To learn the one-to-many mapping in the try-on stream, the context information is utilized
in the Fit-in module to constrain the output to be deterministic. Besides, an attention mechanism is applied to encourage the
network to focus on the object. To learn the many-to-one mapping in the take-off stream, adversarial learning is adopted directly.

with the content code zC
B before the generator GA and con-

catenate the mask mA with the generated image xBA before
the discriminator DA, respectively. This simple but effective
attention operation encourages the network to focus on the
generated clothing instead of the context part. This improves
the results, especially when the objects to be translated have
a highly variable scale/location within the images.
Take-off stream For the take-off stream, the clothed person
image xA first passes through a convolution block and then
gets multiplied with the clothing mask mA in order to ex-
clude the background and skin information. Similar to the
try-on stream, the masked feature maps are then encoded into
a content code zC

A in the shared content space ZC
shared.

For the decoding part, the only difference with the try-on
stream is that there is no ”Fit-in” module or mask attention.

3.3. Learning
In this section, we only describe A→B translation for sim-
plicity and clarity. The B→A is learned in a similar fash-
ion. We denote the content latent code as zC

A=EC
A(xA), style

latent code as zS
A=ES

shared(xA), within domain reconstruction
output as xAA=GA(zC

A, zS
A), cross domain translation output as

xAB=GB(zC
A, zS

A). Our loss function contains terms for the bidi-
rectional reconstruction loss, cycle-consistency loss and ad-
versarial loss [11, 19]. Besides, we also use a composed
perceptual loss to preserve the appearance information across
domains, and a symmetry loss capturing some extra domain
knowledge [9, 36].

Bidirectional reconstruction loss (LxA

LR, LxA

SR). This loss
consists of the feature level latent reconstruction loss LLR and
the pixel level image self-reconstruction lossLSR. The former
contains both content and style code reconstructions.

LxA
LR =E

xAB,zC
A

[
‖EC

B (xAB)− zC
A‖1
]

+E
xAB,zS

A

[
‖ES

shared(xAB)− zS
A‖1
]

(2)

LxA
SR =ExA

[
‖xAA − xA‖1

]
, (3)

Adversarial loss (LxA

GAN ). To make the translated image
look domain realistic, we use an adversarial loss to match the
domain distribution.

LxA
GAN = ExB

[
logDB(xB)

]
+ ExAB

[
log (1−DB(xAB))

]
(4)

Cycle-consistency loss (LxA

CC). To enable unpaired transla-
tion, the cycle-consistency loss [38] is applied to stabilize the
adversarial training.

LxA
CC = ExAB,xA

[
‖GA(E

C
B (xAB), E

S
shared(xAB))− xA‖1

]
(5)

Perceptual loss (LxA

P ) To preserve the appearance informa-
tion, we apply a composed perceptual loss.

LxA
P =(ExAA,xA

[
‖Φ(xAA)− Φ(xA)‖22

]
)

+(ExAB,xB

[
‖Φ(xAB)− Φ(xA’)‖22

]
)

+λ ExAB,xB

[
‖Gram(xAB)−Gram(xA’)‖1

]
, (6)

where xA′ is the Region of Interest (RoI) of xA. For cloth-
ing items, it is the segmented clothing region. Φ is a network
trained on external data, whose representation can capture im-
age similarity. Similar to [5, 15], we use the first convolution
layer of all five blocks in VGG16 [30] to extract the feature
maps to calculate the Gram matrix that contains non-localized
style information. λ is the corresponding loss weight.



Symmetry loss (LxA

Sym). To utilize the inherent prior knowl-
edge of clothing, we apply a symmetry loss [9, 36] to the
take-off stream.

LxA
Sym = ExAB

[ 1

W/2×H

W/2∑
w=1

H∑
h=1

‖xw,h
AB − xW−(w−1),h

AB ‖1
]
, (7)

where H and W denote the height and width of the image,
(w, h) are the coordinates of each pixel, and xw,hAB refers to a
pixel in the transferred image xAB.
Total loss. Our model, including encoders, decoders and dis-
criminators, is optimized jointly. The full objective is as fol-
lows,

min
EC

A,EC
B ,ES

shared,
GA,GB

max
DA,DB

L(E
C
A, E

C
B , E

S
shared, GA, GB, DA, DB)

= LxA
GAN + LxB

GAN + λCC(LxA
CC + LxB

CC ) + λSR(LxA
SR + LxB

SR )

+ λLR(LxA
LR + LxB

LR ) + λP(LxA
P + LxB

P ) + λSymL
xA
Sym. (8)

4. EVALUATION

Datasets We evaluate our method on the clothing try-on and
take-off tasks on the FashionStyle and VITON [8] dataset.
VITON has around 16,000 images for each domain. However,
we find that there are plenty of image duplicates with differ-
ent file names. After cleaning the dataset, there are 7,240
images in each domain left. The FashionStyle dataset, pro-
vided by an industrial partner, has 5,230 training images and
1,320 testing images of clothed people (domain A), and 2,837
training images and 434 testing images of the clothing catalog
items (domain B). For domain A, FashionStyle has multiple
views of the same person wearing the same clothing item.
We present results on this dataset for one category, namely
pullover/sweater.
Metrics We use paired images from different domains depict-
ing the same clothing item to quantitatively evaluate the per-
formance of our method. For the case of the try-on task we
measure the similarity between the RoI of the original image
(from domain A) and the RoI of a generated version (where
its corresponding clothing item has been translated to fit in
a masked out version of the image). Thus, we call it Try-on
RoI. To create this masked image we first perform clothing-
item segmentation [20] to remove the clothing-item originally
worn by the person. For the case of the take-off task, given an
image from domain A, we measure the similarity of its corre-
sponding clothing item (from domain B) with the generated
item. On both cases similarity between images is computed
using the SSIM [33] and LPIPS [35] metrics. We report the
mean similarity across the whole testing set.
Implementation details The LPIPS [35] network is used as
the perceptual feature extractor Φ in Eq. 6. In all our exper-
iments, we use the Adam [16] optimizer with β1=0.5 and
β2=0.999. The initial learning rate is set to 2×10−6. Models
are trained with a minibatch of size 1. We use the segmen-
tation method [20] to get the clothing mask and its bounding
box. The shared content code is a tensor whose dimension is
determined by the data. The shared style code is a vector, we

Table 1. Mean SSIM and LPIPS-VGG similarity. Higher
SSIM values and lower LPIPS indicate higher similarity.
Method Try-on RoI (SSIM/LPIPS) Take off (SSIM/LPIPS)

Ours 66.42 / 27.02 61.19 / 34.37
Supervised model 69.51 / 24.14 61.54 / 32.56

Table 2. Comparisons w.r.t. state-of-the-art methods for the
take-off task on the FashionStyle dataset.
Method Original (SSIM/LPIPS) with mask (SSIM/LPIPS)

CycleGAN 45.63 / 47.47 47.18 / 49.94
MUNIT 45.97 / 46.53 51.92 / 48.16
Ours N/A 61.19 / 34.37

use 8 dimensions in our experiments.

Ref.

Input
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Input GT.Generation Input GT.Generation Input GT.Generation

Fig. 3. Try-on and take-off results on the VITON dataset. For try-on (top)
each column shows a person (from the top row) virtually trying on differ-
ent clothing items. For take-off (bottom) each example consists of three
images: input image, generated take-off image and the ground-truth (GT)
image. Zoom in for more details.

4.1. Clothing try-on / take-off on FashionStyle
We present quantitative results on the translation performance
of the try-on / take-off tasks in Table 1 for the FashionStyle
dataset with related qualitative results presented in Fig. 1.
The results indicate our method can preserve the color and
patterns well in an unpaired way for both try-on and take-
off tasks. Our Fit-in module does help the model tackle the
one-to-many mapping problem. Please refer to supplemen-
tary material for more results.

4.2. Clothing try-on / take-off on VITON
We complement the previous results with a qualitative ex-
periment (see Fig. 3) on the VITON dataset using the full
model. We see that our method is able to effectively trans-
late the shape of the clothing items across the domains. It is
notable that on the try-on task, it is able to preserve the tex-
ture information of the items even in the presence of occlu-
sions caused by arms. This is handled by the proposed Fit-in
module (Sec. 3) which learns how to combine foreground and
contextual information.
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Fig. 5. Comparison with VITON [8] and CP-VITON [31] (both supervised) on the Try-on task.

4.3. Comparisons with existing methods

We compare our model w.r.t. CycleGAN [38], MUNIT [11],
VITON [8] and CP-VITON [31]. Fig. 4 shows qualitative re-
sults from our model, CycleGAN and MUNIT. It is clear that
these unpaired methods cannot handle the one-to-many shape
transfer task. CycleGAN can only work for one-to-one map-
ping task. MUNIT has the ability to do many-to-many map-
ping for style translation but it is unable to transfer shapes.
We present quantitative results in Table 2. We report perfor-
mance using the original version of those methods and a vari-
ant where the same mask used in our method is applied to their
input. We do not provide the Try-on RoI scores since these
existing methods cannot determine the RoI for Try-on images
(see Fig. 4). The comparison with the supervised VITON
methods is shown in Fig. 5. It is motivating that even without
any supervised paired data, our method achieves competitive
results.

5. CONCLUSION

We present a method to translate the shape of an object across
different domains while preserving its style/appearance. Our
experiments show that our method is able to achieve the task
at hand while surpassing the performance of existing efforts.
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