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1 Introduction

In this work we focus on measuring the visual compatibility of objects
depicted in different images. Inspired by the success of representations
based of mid-level elements [2, 3, 5, 8, 9], we propose a hierarchical
method to learn visual representations in a data-driven fashion. At the
base-level we discover a set of informative class-specific elements by min-
ing activations of Convolutional Neural Networks (CNN). These base-
level elements are effective at describing images of the classes of interest.
At the top-level we exploit co-occurrences of base-level elements between
images of compatible objects. This produces a set of “rules” which “ex
plain” the compatibility of such objects. The main contribution of this
work is a hierarchical method that not only measures the compatibility
between objects depicted in images but also provides an insight on the
features that drive the compatibility.
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2 Proposed method

Our method follows a three-step approach as depicted in the figure above.
Given a set of object images (a) accompanied with object-class labels, and
links between them describing the (in)compatibility between them (b), we
proceed as follows. First, we uniformly extract image patches for each im-
age in the collection and compute CNN activations from each patch (c).
Second, we perform mining on the CNN activations from images corre-
sponding to each object class (d), producing a set of activation patterns
(base-level elements) that describe each of the classes of interest. Third,
given a set of image pairs, the base-level elements are detected in each
image and pattern sets of compatible base-level elements are discovered
(e) via association-rule mining [1].

2.1 Modeling Object Appearance via Base-level Elements
Base-level elements are extracted with the goal of describing different vi-
sual characteristics of instances of class ¢. Given an image of an object of
class ¢, we uniformly sample a set of regions R = {ry,r2,...,1,} and for
each region r; we compute CNN activations as an initial feature. Follow-
ing this, we construct class-specific transaction-item matrices where each
transaction is defined by an image region r{ from class ¢ and the items are
the CNN activations of such regions. Each matrix is binarized by select-
ing the top-k activations per transaction. This matrix is mined producing a
set of patterns. Then, we remove redundant patterns that fire on the same
set of items (CNN activation indices), thus, producing a reduced set of
patterns P, The next step consists of extracting a set of visual elements
V'e € P’°. The visual elements v € V' cover all the image patches that
contain the pattern p/ € P’. For each base-level element v/°, we train an
LDA classifier 6/ using all the image patches covered by vi°.

2.2 Modeling Visual Compatibility via Top-level Elements

Given a pair of images depicting compatible objects, the goal of top-level
elements is to represent the set of object characteristics (described via
base-level elements) that define such compatibility. To this end, given
a set of image pairs with labels stating the compatibility of the depicted
objects, first, we compute activations of base-level elements using the
classifiers 91!0_ Then, a new set of transaction-item matrices (one for each
class combinations (c;,c;)) are defined where the transactions are defined
by the image pairs and the items by the activations of base-level elements
occurring on them. As a third step, each matrix is mined via association-
rule mining [1] producing a set of patterns P”(¢</) which are further re-
duced to obtain the top-level elements V"(¢:¢)) ¢ P"(:¢i)  Finally, for
each top-level element v/(<</) we train a LDA classifier 6”(<</) using all
the image pairs covered by v /(ci¢;) Each of these classifiers measures the
level to which a specific top-level element occurs on a pair of images.

2.3 Inference

During testing, given a pair of images to be evaluated, we extract the
activations of both base and top level elements using the classifiers 0’ (c1)

- and 0”/(ci}) , respectively. Then, we measure the compatibility by taking
¢ the maximum response between top-level elements. Please refer to [7] for
. a detailed description of the proposed method.
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Figure 1: Some of the clusters defined by the base-level visual elements
for the shirts, jeans, coats & jackets, and sweaters product classes. For
each of the clusters we have added a text caption (in blue) of the style
that they seem to encode. Furthermore, each image within each cluster is
marked with the patch that encodes such style.

3 Evaluation

We conduct experiments on the clothes-related classes from the massive
Amazon-based dataset collected in [6]. We focus our experiments on a
subset covering ~500K images using the compatibility annotations and
image splits used in [10]. We compute CNN activations using Caffe [4]
in combination with the CaffeRef model [4]. We consider a set of 4000
base/top elements at each level of the hierarchy. Total training time took
below 12 hours. We compare w.r.t. the method proposed in [10] which
also addresses the problem of measuring visual compatibility. The method
from [10] operates at the image level by learning a space in which com-
patible objects are close via a siamese network architecture. Following
the evaluation protocol from [10], we use as performance metric the area
under the curve (AUC) defined by the False Positive Rate (FPR) vs. the
True Positive Rate (TPR) on the compatibility estimation task. We show
qualitative results in Fig. 1 and 3.



Figure 2: Accurately predicted compatible objects. For each object the regions of the top-3 base-level elements are indicated with their scores color-
coded in jet scale (except for the t-shirt example where the 2" and 3¢ elements overlap). For each base-level element, we present a subset of random
examples that compose it. Note how some base-level elements effectively describe some of the features that define the link between the objects.
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Figure 3: Some examples of accurately predicted compatible object pairs.
For clarity, for each object the regions of only the top-3 base-level ele-
ments are indicated with their scores color-coded in jet scale.

3.1 Discussion

On the quantitative side, the proposed method achieves subpar perfor-
mance (0.66 AUC) when compared to the method from [10] (0.80 AUC).
However, on the qualitative side, the method from [10] has a more re-
duced output in terms of “explaining” the reasons that make the com-
pared objects compatible. This is mostly due to the fact that it operates
in a black-box fashion with an output limited solely to a compatibility
score. On the contrary, while still being able to estimate the compatibility
up to some level, the proposed method not only effectively models dif-
ferent styles in which the objects of interest may occur (Fig. 1) , but it
also provides an insight on the characteristics of the objects that define
compatibility between them (see Fig. 2 & 3). Moreover, there is evidence
(Fig. 4) suggesting that the method is able to exploit contextual informa-
tion when modeling object classes and the compatibility between them.
For example, the method is able to encode that skirts and some tops are
female products (Fig.4.a). Likewise, it is able to encode that wearing 3/4
Jjeans leave the feet exposed (Fig.1, 2nd Row).

Despite its descriptive strength, there are several areas in which the
proposed method can be improved. First, performing a sampling at differ-
ent scales should bring improvement in two ways: i) better base-level ele-
ment alignment, and ii) inspection of low-resolution base-level elements.
This should provide more informative base-level elements to assist the
discovery of top-level elements. Second, in its current state, the proposed
method computes the compatibility score between images by taking the
maximum response from the classifiers based on the top-level elements
(Sec. 2.3). This removes the possibility of different top-level elements
operating in a coordinated fashion. This is a clear weakness since some
of these elements encode complementary properties, e.g. color, texture,
shape. Future work will focus on improving the inference step by per-
forming ensemble reasoning based on the top-level classifiers.
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Figure 4: Mid-level elements encoding contextual information at the
base (a) and top (b) levels, respectively. The left image shows the region
(blue) of the base-level element. The right image shows comparisons be-
tween images with the top scoring base-level elements that describe the
compatibility color-coded in jet scale. Note how the method is able to
encode that skirts and some fops are female products (a). Moreover, de-
tecting a female face can produce a strong link when comparing skirts and
some fops products (b).
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