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Abstract. Fine-tuning is the common practice of adapting a pre-trained
model so that the encoded features can be reused for a new target task.
Up to now, there have been efforts in the literature to get insights from
the fine-tuning process by measuring the internal feature alignment be-
tween the source and the target datasets. However, they suffer from
three weaknesses. First, their findings are limited to a few datasets,
deep models and focused on only one similarity metric which results
in discordant observations and doubts regarding reliability. Second, the
conducted evaluations are either purely qualitative, which lends itself
to subjectivity; or purely quantitative, which suffers from reduced in-
telligibility. Third, existing analysis focus on the two extremes of the
fine-tuning process, i.e. on the model pre and post fine-tuning. In do-
ing so, there is no room for analyzing the dynamics that link these two
extremes. Here, we conduct both quantitative and qualitative analyses
that aim at shining a light on the feature dynamics during iterative
stages of the fine-tuning process. The analysis shows that feature simi-
larity is reduced, even in early stages, between the source model and its
fine-tuned counterparts when the target domain is dissimilar. Moreover,
it illustrates domain shift across iterations of fine-tuning procedure. We
believe the presented methodology could be adopted for the analysis of
fine-tuning processes and help pinpoint the reasons why some of these
processes are more effective than others. The implementation is available
at https://github.com/hamedbehzadi/TransferLearning_Interpretation

Keywords: Model Interpretation · Neural Networks · Fine-tuning.

1 Introduction

Convolutional Neural Networks (CNNs) have shown the valuable ability of dis-
covering patterns and relationships among data. Training these CNNs is still not
a trivial task. Despite hardware advances, they require massive amounts of com-
putational power and data to do so. To reduce these resource demands, methods
within the umbrella of transfer learning are commonly used. One of the most
popular and classical transfer learning methods is fine-tuning [35]. This method
was originally introduced as a technique to reuse a pre-trained model so that the
already learned features, also known as representation, can be reused for a new
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task. This is specially desirable when little labelled training data is available to
address a new task. Moreover, it reduces the challenges involved in training a
model for a new task from scratch [35].

Despite its advantages and popularity in different fields, little research has
been carried on the representation dynamics that occur as part of a fine-tuning
process. Efforts related to the study of fine-tuning processes follow one of two
directions. On the quantitative side, they include verification of the fine-tuning
effectiveness for the image classification through classification performance met-
rics [14,21,27]. Alternatively, [5,10,21] adopt similarity metrics to measure the
distance between internal features of two specific models, a pre-trained model
and its fine-tuned counterpart. On the qualitative side, [28] provides visualiza-
tions of the internal units during different iterations of the fine-tuning to enable
the visual inspection of changes in the internal features.
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Fig. 1. The pre-trained model is iteratively fine-tuned on the given dataset and task.
During this process, at each iteration, multiple feature-based similarity metrics and
visualizations are computed from the internal features of the source model and those
of the fine-tuned models.

While these works have shed light on the fine-tuning process, they suffer
from the following two weaknesses. First, while a plenitude of intuitive notions
and hypotheses about the fine-tuning process have been put forward via qualita-
tive analysis, i.e. generating visualizations of the features encoded by the internal
units [28], reliance on qualitative visualizations lends itself to subjectivity. More-
over, it does not necessary guarantee generalization in the made observations and
neither the proper comparison with respect to other works.

Second, while [10,21] have conducted a quantitative similarity analysis among
features, their findings are limited to a few datasets, specific CNN architectures,
and are based on only a single feature similarity metric, namely Linear CKA [16].
This not only resulted in discordant observations [16,8], but has not survived the
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test-of-time considering the observations made by recent work [7] on the unre-
liability of linear CKA. Moreover, feature similarity has been measured quanti-
tatively between a pre-trained model and its updated version after a complete
fine-tuned process without analyzing the dynamics of features encoded at the
different stages of the fine-tuning process. This limits the insights that can be
obtained regarding the transferred features. Besides, the evaluation conducted
by this group of works focuses on quantitative metrics, thus omitting any un-
derlying qualitative differences that may help getting a better understanding of
the fine-tuning process.

Our Proposal. To address the aforementioned weaknesses, this work presents
an analysis of intermediate stages of the iterative fine-tuning process for a given
model. The followed pipeline includes both quantitative and qualitative analy-
sis (Fig. 1). Compared to efforts in the literature, the conducted experiments
include variety of CNN architectures and target datasets. In our quantitative
analysis, we consider the Partial-Whitening Shape Metric [33] to quantify fea-
ture similarity during fine-tuning process. In the qualitative analysis, different
types of visualizations such as activation heatmaps and average visualizations
are generated to get an insight on the state of features encoded in the model at
a given iteration of the fine-tuning process. These visualizations are produced at
the level of individual samples as well as at the class level. The resulting analysis
is focused mainly on the inspection of the features encoded in internal units of
a given model, more specifically, in the feature extraction part (convolutional
layers) of the architecture. In addition, we use these inspection capabilities to
study the level to which features are re-used during the different iterations of
the fine-tuning process. Hence, the goal of this work is not to push the state-
of-the-art further by improving classification performance via fine-tuning, but
rather obtaining a better understanding of the dynamics of the fine-tuning pro-
cess through a variety of data and tasks scenarios. In this regard, the different
feature-based similarity measurements and visualizations, included in our work,
reveal the influence of data and number of iterations in the fine-tuning process.

This paper is structured as follows: Sec. 2 positions our study w.r.t. existing
efforts. This is followed by the description of the followed experimental pipeline
(Sec. 3.1 & 3.2) and the different components that are used to quantitatively
(Sec. 3.1) and qualitatively (Sec. 3.3) analyze the fine-tuning process. Sec. 4
presents the validation of the pipeline, while closing remarks are given in Sec. 5.

2 Related Work

We describe the existing studies for analyzing the fine-tuning process w.r.t the
following four aspects.

Similarity Estimation. In the literature, there is a significant amount of
works measuring similarity between layers of different models through different
metrics such as Canonical Correlation Analysis (CCA) and its extensions, namely
SVCCA [25] and PWCCA [19]. Recently, a newer extension of CCA, called Lin-
ear CKA [16] has become a staple metric in the literature [4,22]. Different from
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these, here we focus on studying the internal behaviour of a model by comparing
the feature similarity between layers of a given model and its fine-tuned coun-
terpart. Along this line, [5,10,21] have utilized Linear CKA for measuring the
feature similarity. However, [8] has shown that CCA and its variations are not
always statistically reliable for testing functional differences in models. More re-
cently, [6] and [7] investigated the reliability of Linear CKA by measuring the
alignment between learned features from the layer before the output of a CNN
and transformation versions of them. According to the low similarity values ob-
tained by linear CKA in their experiments, [6] and [7] stress the unreliability
of Linear CKA. Moreover, [8] has concluded that the Orthogonal Procrustes
metric [30] has not received a comparable attention in the literature, despite its
proven track-record. Different from these, our pipeline includes both distance
metrics namely Partial-Whitening Shape Metric (PWSM) [33] and Orthogonal
Procrustes [30] in a variety of fine-tuning tasks. Additionally, [1] has shown that
PWSM, as a Geometry based Shape Metric (GSM), produces reliable results
than Linear CKA. Moreover, the mentioned studies examine the similarity of
features between a pre-trained model and its fine-tuned version obtained after
several iterations of fin-tuning. In contrast, our research delves into the encoded
feature similarity between a pre-trained model and its counterparts at different
stages of the fine-tuning process, i.e. analyzing the feature dynamics during the
fine-tuning process. Finally, different from these works, we verify the coherency
among the outputs produced by these two metrics via the Pearson correlation.

Classification Dataset and Architecture coverage. Regarding the CNN
architectures considered for the analysis of the fine-tuning process, [10,28] con-
sider Inception-v1 [29] pre-trained on the ImageNet [26] dataset. Also, [21] and
[5] analyze the fine-tuning process on Resnet50 [12] pre-trained on ImageNet.
Different from these efforts which focus on a single CNN architecture, we con-
sider similar and dissimilar architectures, namely VGG19 [18], Resnet50 [12],
and Densenet121 [13] (These two have residual layers and Batch-Normalization
layers [12]). All these architectures have been trained on the ImageNet dataset
(Pytorch library [24]). Regarding the considered classification datasets (i.e., the
target dataset), [28] and [5] apply fine-tuning on multiple image recognition
datasets. With the exception of these, [10] and [21] have considered only one
image recognition dataset. Different from these efforts which focus on the object
classification task, we also include the scene classification task via the 15-scene
dataset [2]. This is done with the goal of investigating the influence of the task
(i.e., object vs. scene classification) in the internal dynamics of the fine-tuning
process. Additionally, we use two object classification datasets namely AwA2 [17]
(which is similar to the source domain ImageNet, containing similar animal ob-
jects and background) and Fruits [20] (dissimilar to the source domain depicting
artificial white background). As a result, we consider a large set of data and
tasks including 9 models in our experiments (Table 1). We believe this assists
obtaining a better picture of the fine-tuning process.

Fine-tuning Visualization. [10] and [28] apply gradient-based methods [23]
to maximize the aggregated features of a given unit by computing the feature’s
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gradient w.r.t the input image, and doing gradient ascent, i.e., Representation
Inversion (Feature Visualization) [23]. With the exception of these efforts, exist-
ing works only assess the similarity from the quantitative point of view without
providing human-understandable visual evidence, i.e. qualitative insights, of the
fine-tuning process. On the other hand, while in [10] and [28] the Representation
Inversion method resulted in images illustrating synthetic patterns from different
classes encoded by the targeted unit, we are interested on identifying real input
patterns from the data encoded by the units. Furthermore, we intend to inves-
tigate whether the fine-tuning procedure results in a shift in the type of input
visual patterns, that is, part(s) of an object, scene, and background, that are
exploited for the downstream task of interest. Towards this goal, our pipeline
provides a series of visualizations from a given unit, throughout the iterative
fine-tuning process, for both individual samples and at the level of each class.

Domain Generalization (DG) & Domain Adaption (DA). DG aims to
learn from one or multiple source domains without access to target domains [34].
In other words, a model is trained on one or multiple source training domains
to achieve a minimum prediction error on an unseen target domain, while DA
is an special case of Transfer Learning where, opposite to DG, has access to
the target training data [32]. Different from DA in which the source and target
domains should be related in such as input and output feature space and tasks
[11], fine-tuning can be applied on different source and target domains [35]. Our
work focuses on studying transferred internal features during fine-tuning where
source and target domains and the tasks of interest might be different.

3 Methodology

The followed pipeline, see Fig. 1, fine-tunes a given source model F for T epochs.
For each epoch t∈[0, ..., T−1], the feature maps of each layer from the source
model F and its fine-tuned counterpart F ′ are collected. Afterwards, the simi-
larity between feature maps of corresponding layers from both models is mea-
sured. This process is repeated for each epoch and leads to the quantification
and visualization of changes of features during the fine-tuning process.

Consider a target image dataset D={X i,Yi}ni=1 composed by n image sam-
ples X i paired with their corresponding class label Yi. The parameters of the
source model F , including layers of the feature extraction and the classifier parts
of the source model, are fine-tuned on the target dataset D which leads to the
fine-tuned variant F ′. Hence, Fl(X i) and F ′

l (X i) compute the feature maps Ai
l

and Bi
l , respectively, from the convolutional layers l={1...L} having a width of

w, a height of h, and a depth of d.

3.1 Feature-based Similarity

For each epoch of the fine-tuning process, we collect the feature maps Bi
l . Then,

we measure the similarities between each pair of feature maps (Ai
l,Bi

l) over n
samples for each layer l. This results in a similarity vector Sl with a shape
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1×d. We consider two metrics: Partial-Whitening Shape Metric (PWSM) [33],
determining an angle between the representations (Eq. 1); and Orthogonal Pro-
crustes [30], capturing both magnitude differences and the orthogonality (or
alignment) (Eq. 2) between two features.

θPWSM (Ai
l,f ,Bi

l,f ) = arccos

(
⟨ϕ(Ai

l,f ), ϕ(B
i
l,f )⟩

∥ϕ(Ai
l,f )∥F ∥ϕ(Bi

l,f )∥F

)
(1)

Where ϕ applies a partial whitening function on the feature maps and ||·||F is
the Frobenius norm [31]. The suffix f refers to the index of the filter f in the
layer l. [33] has shown that this metric is bounded in the interval [0, π].

SOrthProc(Ai
l,f ,Bi

l,f ) = 2− ||Ai
l,f ||2F + ||Bi

l,f ||2F − 2||Ai
l,f

TBi
l,f ||∗ (2)

Where ||·||∗ is the nuclear [9] norm. [30] has shown that this metric is bounded
in the interval [0, 1] for normalized features. For both metrics, a lower value
close to zero indicates a lower distance, which means higher similarity. Also, we
measure the Pearson correlation coefficient between these two metrics.

3.2 Reusability of Pre-trained Features Throughout Fine-tuning

In addition to analyze the representation dynamics during the fine-tuning proce-
dure, we aim to investigate the reusability of pre-trained encoded features from
different models during different stages of fine-tuning w.r.t to the task and data
domain. This analysis touches an important aspect of fine-tuning through differ-
ent models that has received close to no attention. To enable the measurement of
such reusability, we propose an extension of the procedure described in Sec. 3.1.
More specifically, we obtain similarity measurements through Eq. 1 and 2 on
the feature maps from different layers for different dataset and tasks. Next, the
reusability of features from a given model for the downstream task during fine-
tuning can be measured as the mean and standard-deviation of feature-based
similarity across different epochs for a given dataset and task.

3.3 Fine-tuning Visualization

In order to investigate the features encoded by the fine-tuned model, after each
epoch of the fine-tuning process, two modalities of visualizations are produced
for a given convolutional filter f : class-based and sample-based visualizations.

Class-based visualization. Given the feature map Bi
l,f of the sample X i

from class c computed by the filter f in the convolutional layer l, we compute
the receptive field [3] of the filter f at a location (u, v) in the feature map. The
location (u, v) is selected by finding the indices of an element with the highest
activation (referred as ail,f ) in the feature map. This process results in a region
Ri

l,f focused on a part of the input sample X i. This process is repeated for all
samples X i from class c. Finally, we compute a weighted average of the obtained
regions, i.e.,

∑
ail,fRi

l,f , illustrating the average of real patterns that the filter
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f focuses on for the class c. This visualization is generated for each epoch of the
fine-tuning process in order to provide qualitative insights on how the encoded
features change during fine-tuning. This is used as a complementary evidence
to the quantitative results obtained from Sec. 3.1. Figures 5 and 6 illustrate
examples of this visualization modality.

Sample-based Visualization. Each feature map Bi
l,f , highlighting different

aspects of the input, is resized to the size of the input and superimposed on the
image X i to produce a heatmap visualization of the features. This visualization
is generated for each epoch of the fine-tuning process in order to provide iterative
visualizations of encoded features per sample. Figures 7 and 8 illustrate examples
of this visualization modality.

4 Evaluation

We validate our pipeline on popular CNN architectures; VGG19 [18], Densenet121 [13],
and Resnet50 [12], pre-trained on ImageNet [26] (source domain). We consider
three classification scenarios where datasets and tasks (target domain) are ei-
ther similar and dissimilar w.r.t. the domain where the source model was origi-
nally trained on. In the first scenario, a scene classification task on the 15-Scene
dataset [2] is considered. In the next two scenarios, an object classification task
on two datasets AwA2 [17] (similar to the source domain, depicting similar an-
imal objects and background) and Fruits [20] (dissimilar to the source domain,
depicting artificial white background) are investigated. We use the Adam opti-
mizer [15] and a batch size of 196, which proved the most optimal in internal
tests. Except for the models fine-tuned on Fruits where a learning rate 1e−3 was
used, other models were fine-tuned with a learning rate 1e−4 on all the datasets.
For reference, Table 1 shows the fine-tuned training and test classification accu-
racy for the considered datasets and CNNs.

Table 1. Classification performance on train/test sets for different datasets.

CNNs/ Datasets 15-Scene AwA2 Fruits
VGG19 98.43 / 93.31 96.78 / 89.23 99.83 / 98.42
DenseNet121 99.10 / 94.87 99.57 / 91.59 99.45 / 99.82
Resnet50 98.74 / 93.08 99.43 / 90.97 96.48 / 99.02

4.1 Quantitative Analysis: Internal Feature Similarity

In this section, we conduct a quantitative analysis based on the computed
feature-based similarity values (Sec. 3.1), followed by a discussion of the trends
observed in different experiments.

Following Sec. 3.1, we use the Partial-Whitening Shape Metric and Orthogo-
nal Procrustes metrics to measure the similarity between internal features (i.e.,
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Fig. 2. Feature-based similarity across different fine-tuning epochs between a pre-
trained Densenet121 and its fine-tuned counterparts on the 15-scene (blue), AwA2
(yellow), and Fruits (red) datasets. Similarity is reported based on the PWSM (left)
and Orthogonal Procrustes (right) metrics. Legends show from top to bottom the
name of lower to higher layers.

feature maps) from corresponding layers in the source model and its fine-tuned
counterparts. In order to be able to monitor the dynamics of the encoded fea-
tures at different parts of the architecture, we select for our analysis some earlier
and latter layers. Specifically, we have considered the ReLU layers located at the
end of the major components within the more complex CNNs, e.g. at the end
of a dense block in Densenet121. We opted for the focus on ReLU layers given
their characteristic, as activation function, of indicating via higher positive val-
ues which of the internal features should be propagated to deeper layers and thus
contribute to the prediction. Considering this, we discuss observations w.r.t four
aspects, (1) the correlation of the similarity metrics, (2) the effect of fine-tuning
in the features encoded at different depth levels, (3) feature changes/dynamics
across iterations of the fine-tuning process, and (4) the influence of the data
involved in the process. These aspects are investigated to assess changes and
the re-usability of the features, learned from the source domain, in different
fine-tuning scenarios.

Figures 2, 3, and 4 show the similarity across different epochs of the fine-
tuning process as measured by PWSM and the Orthogonal Procrustes. Worth
mentioning, these metrics measure the distances. As a result, a lower distance
value close to zero, indicates a higher similarity. These similarity values are
reported between the pre-trained models VGG19, Densnet121, and Resnet50
and their fine-tuned counterparts respectively. In these figures, the curves with
similar color refer to the same target dataset. Each point shows the average
distance of a given layer, between feature maps from the source model and its
fine-tuned counterpart in a given epoch. Lower to higher layers are listed from
top to bottom in the legends of the figures.
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Fig. 3. Feature-based similarity across different fine-tuning epochs between a pre-
trained VGG19 and its fine-tuned counterparts on the 15-scene (blue), AwA2 (yellow),
and Fruits (red) datasets. Similarity is reported based on the PWSM (left) and Or-
thogonal Procrustes (right) metrics. Legends show from top to bottom the name
of lower to higher layers.

Similarity metric correlation. Taking the Figs. 2, 3, and 4 into consideration,
both PWSM and Orthogonal Procrustes show extremely similar results over
different fine-tuning tasks. Also, we have observed the mean value for Pearson’s
r as 0.83, with a standard deviation of 0.43. This indicates that there is a highly
positive linear correlation between these two metrics, in general, they tend to
agree with each other.

Effect at different depth levels. We have observed that the fine-tuning pro-
cess has a different effect depending on the depth of the analyzed features. As
can be seen in Figs. 2, 3, and 4, early layers inside a network have consistently
lower distance, i.e. higher similarity, to the features encoded on their correspond-
ing layers in the source model (pre-trained on the ImageNet dataset). On the
contrary, features encoded at deeper layers have higher distance, i.e. lower simi-
larity to their counterparts in the source models. This indicates that the features
encoded in the early layers are slightly modified, when compared to those en-
coded at the deeper layers. This further confirms the genericity of the features
encoded in the early layers and their re-usability during the fine-tuning process.
This also hints at a potential solution to improve the fine-tuning process, more
specifically, by making the effect of the process proportional to the relative depth
of the layers being processed.

Changes across fine-tuning iterations. Considering Fig. 3-right, there is a
downward trend in one layer (feature017 ) of VGG19 fine-tuned on the Fruits
dataset. Except for this, there can be seen a predominantly upward trend in
distance of all of the other layers fine-tuned on different datasets as the models
progress through the fine-tuning process (Fig. 2, 3, and 4). This suggests that,
while in general the filters converge to a new ideal state for the target dataset,
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Fig. 4. Feature-based similarity across different fine-tuning epochs between a pre-
trained Resnet50 and its fine-tuned counterparts on the 15-scene (blue), AwA2 (yel-
low), and Fruits (red) datasets. Similarity is reported based on the PWSM (left)
and Orthogonal Procrustes (right) metrics. Legends show from top to bottom the
name of lower to higher layers.

features from the source model require significant changes to adapt to the target
domain, hence direct re-usability is somewhat limited.

Data Influence. This experiment investigates the influence that the (dis)similary
between the source and target settings may have in the adaptation dynamics of
features. With the exception of VGG19 where layers fine-tuned on the 15-scene
and AwA2 datasets encode features with closer distance values (Fig. 3), the lay-
ers of other models fine-tuned on the AwA2 dataset have lowest distance, i.e.
higher similarity, than those fine-tuned on the 15-Scene dataset. Moreover, the
similarity of the features learned in these two tasks, i.e., scene classification and
object classification, to the features learned in the source domain is higher than
that of the object classification task fine-tuned on the Fruits dataset. We can
make three interesting observations from these results.

First, from the perspective of the classification task, AwA2 includes classes
related to animals which can be found in ImageNet (used for pre-training the
models). Therefore, the AwA2 classification task can reuse more features from
the source domain, i.e., based on ImageNet, compared to the 15-Scene dataset.

Second, while the 15-scene classification follows a different task, it was able
to reuse features learned in the source domain. The evidence for this is the higher
similarity trend observed between 15-scene and ImageNet. Besides, images from
the 15-scene dataset contain elements in their background that can be found in
different classes of the ImageNet dataset.

Third, while the Fruits classification task follows a similar task as that of the
source domain (similar to the AwA2 classification task), the images that compose
it have a completely different background (i.e., full white background) than those
of the source domain (ImageNet dataset). This results in lower similarity between
both domains.
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To sum up, the source domain has higher influence on the target domain than
the tasks used in the pre-training and fine-tuning processes. This also shows that
the closest the source and target domains are to each other, the highest amount
of features learned from the source domain can be reused for the target domain.

Reusability of pre-learned features during fine-tuning. In this analysis,
we summarize the feature-based similarity by computing the average and stan-
dard deviation of measured distances across different epochs in accordance with
Sec. 3.2 which are presented in Table 2. As can be seen, adapted features from
models have the lowest average distances to those from pre-trained counterparts
on the AwA2 and 15-Scene datasets with different classification tasks, while
they have the highest distances on the Fruits dataset. On the Fruits dataset,
which has shown that adapted features have the lowest similarity, these features
from Resnet50 are closer to the pre-trained features during iterative stages of
fine-tuning compared to those from VGG19 and Densenet121. This reveals that
when there is a high dissimilarity between source and target domains, Resnet50
provides a higher amount of features that can be reused.

Table 2. Sensitivity of feature reusability to the task and data domain during fine-
tuning procedure.

CNNs / Datasets AwA2 15-Scene Fruits
VGG19 0.345 ± 0.039 0.330 ± 0.026 0.921 ± 0.021
DenseNet121 0.436 ± 0.033 0.576 ± 0.025 0.796 ± 0.023
Resnet50 0.410 ± 0.034 0.550 ± 0.026 0.749 ± 0.027
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Fig. 5. Average visualizations obtained from VGG19 (pre-trained on ImageNet) fine-
tuned to the AwA2, 15-scene, and Fruit datasets.
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4.2 Qualitative Analysis: Fine-tuning Visualization

In this section, we aim to conduct a visual inspection to complement the trends
observed in the quantitative analysis (Figs. 2, 3, and 4). Towards this goal, during
the fine-tuning process of the considered CNN architectures on the previously-
mentioned datasets, we compute sample-based and class-based visualizations
(Sec. 3.3) for the features analyzed in Sec. 4.1.

Class-based visualizations. We show examples of the average visualizations
produced per class in accordance to the formulations presented in Sec. 3.3. Fig-
ures 5 and 6 show the visualizations produced from upper layers in VGG19 and
Resnet50 for different datasets, respectively. Each row shows the average visu-
alization, from a specific layer and filter, for a given class. The left-side column
shows the visualization from the source model, while the rest of the columns
illustrate the visualizations at different epochs of the fine-tuning process.

We can make two observations from Figs. 5 and 6. First, the quantified
feature-based similarities from VGG19 and Resnet50 illustrated in Figs. 2 and
4 show, quantitatively, that models fine-tuned on the AwA2 dataset have the
highest similarity to the source models. This can be further observed in the first
row of the visualization results in Figs. 5 and 6. According to the examples in
these figures (Figs. 5 and 6), while the average visualizations from the AwA2
dataset show similar patterns to that of the source model during the fine-tuning
process, the average visualizations from the 15-scene and Fruits datasets show
patterns differing from those from the source model.

Second, it seems that the relatively lower similarity that were reported on
Fruits may find their origin in the fixed white background that characterizes
images of this dataset. Specifically in Figs. 5 and 6, the source model, pre-
trained on ImageNet, did encode features related to the object of interest of
the source domain, i.e. the fruits. However, during the fine-tuning process these
features were updated to also include the color transitions introduced by the
white background prevalent in the Fruits dataset. This inspection helps to get
additional insights on the effect that data may have in the fine-tuning process.
It assists on the attribution of the trends observed in the quantitative analysis.

In addition, it can be seen that the patterns emerging in the visualizations
change during different epochs. Consider the example of filter seven in layer 54
of Resnet50 fine-tuned on the 15-scene dataset (Fig. 6 middle) for example. In
epochs one, three, and five, several persons are shown, while in the rest a single
person is depicted. This reveals the effect of the iterative process in fine-tuning
as observed in the quantified feature-based similarities in Sec 4.1.

Sample-based visualizations. Opposite to the deeper layers, convolutional
layers at lower depth have small receptive fields. This, in turn, makes the in-
spection of visualizations derived from their receptive fields hard since the small
size of the produced visualizations leads to low intelligibility. To address this is-
sue, we use complete feature maps from lower layers, pertaining to each individ-
ual sample, as means to highlight important region(s), and the related features,
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Fig. 6. Average visualizations obtained from Resnet50 (pre-trained on ImageNet)
fine-tuned to the AwA2, 15-scene, and Fruit datasets.

detected by those layers. Hence, here we present some of these sample-based
visualizations for the lower layers of a given fine-tuned model based on Sec. 3.3.

Figures 7 and 8 show examples of sample-based visualization for the VGG19
and Resnet50 models fine-tuned on the 15-scene and Fruits datasets, respectively.
From these visualizations we can make the following two observations.
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Fig. 7. Examples of sample-based visualizations during fine-tuning from lower layers in
a VGG19 model fine-tuned on the 15-scene dataset. Each row shows visualizations
of feature maps from a filter in a convolutional layer.

First, as can be seen in Fig. 7 for the VGG19 model, filters from the lower
layers, i.e., the layers 3 and 8, highlight regions during the fine-tuning procedure
which are similar to the regions highlighted by the source model. This further
complements what was observed for the quantitative feature-based similarity
analysis (Fig. 3) where lower layers have higher similarity to those of the source
model. This shows that while the target classification task is different from that
of the source model, there is a similarity between low-level features in the source
and target datasets which leads to the re-use of some of the low-level features
originally encoded in the source model.

Second, opposite to the trend observed in 15-Scene fine-tuning task (Fig. 7),
where the considered units are activated in a consistent way during the fine-
tuning process; Fig. 8 shows that as fine-tuning progresses, the features shift
to new regions of the inputs. This again supports the observation made in the
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quantitative analysis, where the target domain has an influence in dynamics of
the features during fine-tuning. More specifically in Fig. 8(first row), while the
filter 3 from the layer 25 in Resnet50 highlights regions centered on the object,
during the fine-tuning process to the Fruit dataset there is a significant shift
towards the background features that characterize this dataset. This suggests
that this type of transition is not exclusive to features encoded at upper layers,
as was observed in Fig. 5 and 6, but also to those encoded at lower layers.

To sum up, considering the highlighted regions in the input features detected
by the target model that are similar to those regions detected by the source
model along with detected new features during the fine-tuning process reveals
the domain shift and feature dynamics across iterations of the fine-tuning process
in the lower layers, as initially discussed in the quantitative analysis in Sec. 4.1.
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Fig. 8. Sample-based visualizations during fine-tuning from lower layers in a Resnet50
model fine-tuned on the Fruit dataset. Each row shows visualizations of feature maps
from a filter in a convolutional layer.

5 Conclusion

This study presents a pipeline to analyse feature similarity between a pre-trained
model and its fine-tuned versions from different stages of the fine-tuning pro-
cess. This pipeline includes feature-based similarity metrics along with activation
heatmaps and average of visual patterns. The conducted analysis show a high
correlation between feature-based similarity metrics, indicating of consistency
among analysis. The analysis reveal that models incorporate more features from
the target domain when the source and target domains differ significantly. More-
over, Resnet50 requires the lowest adaption of pre-trained features in presence of
dissimilar target data. Moreover, as a future work, we aim to improve the stan-
dard fine-tuning algorithm by integrating the obtained insights. One potential
approach is instead of fine-tuning the features in a consistent manner across all
layers, fine-tuning could be applied on the layers in proportion to their depth
location and similarity rate to the source domain.
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