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ABSTRACT
This paper focuses on the problem of unsupervised image-
to-image translation. More specifically, we aim at finding a
translation network such that objects and shapes that only ap-
pear in the source domain are translated to objects and shapes
only appearing in the target domain, while style color features
present in the source domain remain the same. To achieve
this, we use a domain-specific variational autoencoder and
represent each image in its latent space representation. In
a second step, we learn a translation between latent spaces
of different domains using generative adversarial networks.
We evaluate this framework on multiple datasets and verify
the effect of multiple perceptual losses. Experiments on the
MNIST and SVHN datasets show the effectiveness of the pro-
posed translation method.

1. INTRODUCTION

Image-to-image translation transforms an image from one do-
main to a corresponding image in another domain. Using su-
pervised learning, significant research has lead to impressive
results, e.g. [1, 2, 3, 4]. However, a supervised setup requires
corresponding pairs of images from both domains. Obtaining
these pairs is not trivial. It may be labor intensive, e.g. for
a segmentation task. Sometimes the translation is simply not
available or not uniquely defined, e.g. when transforming cats
to dogs or when translating an image from virtual reality to
the real world. As an alternative, unsupervised methods are
interesting to investigate. However, this makes the translation
task inherently harder. As there are many possible alignments
between the two domains, it requires a mechanism to ensure
that the generated images are indeed a “good” translation.

Recent efforts [5, 2, 6] have made significant progress in
this direction - specifically for the case when translating the
style (appearance) of a given image while preserving struc-
tures or shapes depicted therein. A common practice is to en-
force a cycle consistency constraint [6], translating an image
from a source domain to a target domain, and back. Using this
constraint, it has been shown one can change the color/style
distribution across domains. However, changing shapes turns
out to be more complex.

First, it’s important to note that, while necessary, cycle-
consistency is not a sufficient requirement to ensure proper
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Fig. 1: Shape translation while preserving the style of the image.

image translation. There are in fact a multitude of solutions
satisfying cycle-consistency. For style transfer, the spatial
structure of the network architecture adequately channels the
information flow between the input and output images, result-
ing in mostly local adjustments. This regularizes the problem
and imposes shape preservation. For the case of shape transla-
tion, the extent of the depicted content is expected to change.
This requires non-local deformations that can no longer bene-
fit from regularization via the spatial structure of the network.

In this paper, we learn specialized domain-specific latent
representations. Next, we model an explicit mapping between
these representations. We also add further constraints evalu-
ating the quality of the translation. More specifically, we do
not assume that there exists a shared latent space, as in [7, 8],
but rather map images to their respective latent space first.
To this end, we train two variational autoencoders [9] (VAE),
one for each domain, separately. In a second step, we learn
a mapping between the two domain-specific latent spaces us-
ing an extension of the GAN architecture. We propose a new
architecture by combining VAEs and GANs and obtain suc-
cessful mappings using perceptual losses, e.g. difference of
Structural Similarity loss [10]. As test setting we consider
the structure of numerical digits as the shape features to be
translated across different digit classes (Please see Fig. 1).

The rest of the paper is organized as follows. Sec. 2 posi-
tions our work w.r.t. the literature. In Sec. 3, we describe our
methodology. This is followed by our evaluation in Sec. 4.
Finally, we draw conclusions in Sec. 5.

2. RELATED WORK

Image-to-Image Translation. GANs [11] are widely used
when it comes to image generation [3, 12, 13, 14, 15, 16, 17].
Since GANs are able to create sharp and realistic outputs,
they are useful for image-to-image translation. In [1] a net-



work architecture is proposed to transform images based on
conditional GANs [18]. This principle is further developed
in [19] to generate high-resolution images. The drawback
of these models however, is the use of supervised learning,
which makes them not applicable in many situations. In con-
trast, our translation network is unsupervised in the sense that
it does not require paired examples for training.

Unsupervised learning methods are an alternative when-
ever paired examples are not available. Recent unsupervised
methods enforce a series of constraints in order to steer ex-
amples from different domains to converge on a shared latent
representation. Examples of these constraints include cycle-
consistency [6], semantic features [8], pixel values [20], pixel
gradients [21], class labels [21] or the pairwise distance be-
tween samples [8, 7, 22]. These methods convert the images
to a shared latent space before translating them to the target
domain. This assumes that there exists a shared latent space
between both domains. In contrast, we learn domain-specific
latent spaces and learn a translation between them.
Neural Style Transfer. Another way to translate images is by
making use of a neural style loss. [5] uses a single image as an
example for the style and then divides the source image into a
content and a style representation. An optimization algorithm
is then run to transfer the style of the image, while keeping
the content. The division between style and content is made
using a perceptual loss, calculated using output features of a
pre-trained neural network. In [23] this idea is used to gen-
erate photo-realistic output images. [2] extends this idea by
incorporating a feed-forward neural network to translate the
images. A common aspect that characterizes these methods is
that the shape of the content in their inputs is aligned with that
of their outputs while depicting different styles. Here we fol-
low a complementary direction where we aim at translating,
i.e. modifying, the shape while preserving the style between
input and output.
Shape Translation. One of the first methods aiming at shape
translation was proposed in [24], where clothing-items as
worn by a person are translated to a catalog-like image depict-
ing only that item. Recently, [25] proposed a warping-based
method aimed at virtual try-on of clothing items. Similar
to our work, these methods aim at translating the shape of
the objects (clothing-items) while preserving their style. In
contrast to our method, these methods need paired data dur-
ing training. Closer to our work very recently [26] proposed
to perform unpaired shape translation. However, different
from them, we relax the assumption that a shared latent space
exists between the domains of interest.

3. METHODOLOGY

We define a mapping between two domains A and B. We
have samples {xi}ni=1 ∈ dom(A) and {yi}ni=1 ∈ dom(B),
but there exists no correspondence between the samples of
different domains. We create a network architecture based
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Fig. 2: Overview of the proposed network architecture. Each do-
main is modelled by a domain-specific VAE while shape translation
across domains is handled by a specific module (in green) which
maps one latent space into the other. End-to-end translation from
domains A to B, and v.v., are achieved by following the red and blue
lines, respectively.

on VAEs [9, 27] and GANs [11], more specifically the cy-
cleGAN [6] architecture. Our architecture is illustrated in
Figure 2. We train it in two steps. In the first step, we
train two VAEs separately: one with images from domain
A and one with images from domain B (blue and yellow
blocks in Fig. 2). In a second step, we train the mapping
between the two resulting latent spaces. This is achieved
through a GAN where the generator is directly focuses on
improving the mapping components (see below) and addi-
tional discriminators assess the quality of images produced
considering the output of the mapping components (green
blocks in Fig. 2). The network learns to translate images
from domain A to B and from domain B to A at the same time
as illustrated in Fig. 2 by following the blue and red lines,
respectively. Formally speaking, this is equivalent to the fol-
lowing equations: GenA(x)=DecA(FBtoA(EncB(x))) and
GenB(x)=DecB(FAtoB(EncA(x))). In the next sections
we describe the different modules.

3.1. Modelling domain information

The two VAEs are trained separately. The encoder and de-
coder pair {EncA, DecA} constitute a VAE for domain A.
An image from domain A is mapped via EncA to its latent
space representation and then decoded via DecA to the re-
constructed version of the input image (upper part of Fig. 2).
The VAEs are implemented using the standard practice, as de-
scribed in [9]. The encoder and decoder {EncB , DecB} are
designed in a similar way (lower part of Fig. 2). We apply the
following loss function at this step:

LV AE=− Eq(z|x)
[
log p(x|z)

]
+DKL

(
q(z|x)||p(z)

)
(1)

where z∼Enc(x)=q(z|x) is the latent space representation
of an input image x, x̃∼Dec(z)=p(x|z) is the reconstructed
version of input image x and DKL is the Kullback-Leibler
divergence.



3.2. Shape translation

Once the VAEs have been trained, we train the networks
that learn a mapping between the two latent spaces. We take
the standard cycleGAN [6] network and extend it to be able
to transform shapes. We conducted some experiments with
the standard cycleGAN network and while we were able to
change the color distribution, we were not able to change
shapes and structures – hence the need to extend this frame-
work. The cycleGAN architecture contains two GANs and
imposes an extra cycle-consistency constraint. There are
three losses in total: two for training the GANs and a third
one to make sure the cycle-consistency constraint is enforced.
The GAN loss function is:

LGAN (GenA, DisA)=Ex∈dom(A)

[
log(DisA(x)

]
+Ey∈dom(B)

[
log(1−DisA(GenA(y))

]
(2)

(and similar for domain B). The cycle-consistency loss can be
formulated as follows:

Lcyc=Ex∈dom(A)

[
||GenB(GenA(x))− x||1

]
+ Ey∈dom(B)

[
||GenA(GenB(y))− y||1

] (3)

We add an extra loss term, to favor ”good” translations, i.e.
those that preserve certain aspects between the input and out-
put image:

Lsim(x, y,GenA, GenB)=Ex∈dom(B) d(x,GenA(x))

+ Ey∈dom(A) d(y,GenB(y))
(4)

where d is a distance function. We compare the two following
alternatives for the distance functions:
Color Histogram Distance. First we highlight the most fre-
quent color within the image by quantizing each channel of
the RGB space into 20 intensity values. The distance between
two images is then calculated by taking the mean-squared dis-
tance between their quantized color representations.
Difference of Structural Similarity (DSSIM) [10]. This func-
tion calculates the difference between the SSIM values for
two images. This is a perceptual loss function designed to
create visually pleasing results. The SSIM index is defined as

SSIM(x, y)=
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(5)

where x and y are vectors of image intensities, with their cor-
responding mean and standard deviation values µx, µy and
σx, σy . σxy the covariance and c1=(k1L)

2, c2=(k2L)
2 two

variables to stabilize the division. L is the dynamic range of
the pixel values, typically taken to be 2n−1, with n equal to
the number of bits per pixel, k1=0.01 and k2=0.03. The two
images to be compared are split into N smaller patches xp
and yp, typically taken to be 3×3. The SSIM loss is calcu-
lated by sliding a window over the images and calculating the

SSIM value for all these small regions. The final value is then
taken as the mean. The SSIM loss function can be written as

LSSIM (x, y)=
1

N

N∑
p=1

(1− SSIM(xp, yp)) (6)

Combining all this, our total loss function becomes:

L=LGAN (GenA, DisA)+LGAN (GenB , DisB)

+λcycle ∗ Lcyc(GenA, GenB)

+λsim ∗ Lsim(x, y,GenA, GenB)

(7)

The training at this step is equal to solving a mini-max prob-
lem, where the encoders, decoders and generators are playing
against the discriminators. The first player has to defeat the
second player and minimize the cycle loss and the similarity
loss at the same time. We train by iteratively updating the
different components. Firstly, we update the encoders, de-
coders and mapping networks, while keeping the discrimina-
tors fixed. Secondly, we update the two discriminators, while
the other components are fixed.

4. EVALUATION

Implementation details. We use Adam [28] for the train-
ing. For training the VAEs, we train with a learning rate
of 0.0001, with β1=0.9, β2=0.999 and with a batch size of
25. For the translation step, we train with a learning rate of
0.0001 for both the generator and the discriminator compo-
nents, with values β1=0.5, β2=0.9 and with a batch size of
1. The discriminator is updated 5 times for each update of the
generator. We use standard values (λcycle=2, λsim=5) for the
hyper-parameters. We initialize the weights from a Gaussian
distribution, with mean 0 and a standard deviation of 0.02.

Our framework contains several modules. The encoders
consist of four convolutional layers with a stride of 2. The de-
coders consist of four transposed convolutional layers. These
networks have the ReLU activation function. The mapping
from domain A to domain B (and v.v.) is done with 6 Resid-
ual Blocks [29]. The discriminator has 4 convolutional layers
and uses patchGANs [1]. We use instance normalization [30]
and LeakyReLUs for both of these modules.

4.1. Translating numbers in synthetic images

In this first experiment, we test our network to determine
which loss function and which hyper-parameters work best.
To this end, we use a simple synthetic dataset derived from
MNIST. Since we assume, the shape/structure is the descrip-
tive characteristic of the domains, in this experiment we con-
sider classes 1 and 3 as the domains to be translated. In total
there are 6742 images of class 1 and 6131 images of class 3
in the training partition of the original dataset. We add color
styles to all these images using the color MNIST procedure1.

1https://www.wouterbulten.nl/blog/tech/getting-started-with-gans-2-
colorful-mnist/
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Fig. 3: Translation between classes 3 and 1 on the color MNIST
dataset considering different loss functions. (a) Input images,
(b) Color Histogram distance (c), DSSIM loss, λDSSIM=20, (d)
DSSIM loss λDSSIM=5.

Fig. 4: Translation of classes 1 and 2 (first column) to target classes
0-9 (other columns) from the SVHN dataset .

The images are scaled to 32x32 to fit in our network. The
VAE learns a 128-dimensional latent space representation of
the numbers. We train the network with both the color his-
togram distance and the DSSIM as loss functions. The first
metric does not produce desirable results. The color style is
not transferred adequately. Therefore we continue using only
the DSSIM loss metric. We vary the λsim, which indicates the
importance of the similarity loss. We consider values equal
to 5 and 20. The best results are obtained using the value
λsim=5. For a value λsim=20, the network is not able to
produce a realistic shape. See Fig. 3 for a qualitative compar-
ison of different loss functions.

4.2. Translating numbers in real images

After obtaining successful results with a synthetic dataset, we
now use a dataset containing real images. This experiment
aims at showing the effectiveness of our method in a realistic
setting. This second experiment is conducted on the SVHN
dataset [31]. The images have input size 32x32x3. There
are around 73K training images, split up into ten classes of
numbers. We use the same network structure as used with
the MNIST dataset. We translate the classes 1 and 2 (source
domains) to all other classes from 0 to 9 (target domains).
Qualitative examples of this translation can be seen in Fig. 4.

In order to quantify the performance of the translation
process, we run a classifier on the translated images from the
SVHN test set. This classifier is trained on the SVHN dataset
and determines for each image to which digit class it belongs.
We call the translation successful if the classifier assigns the

Table 1: Accuracy of SVHN classifier on images from: (a) the orig-
inal test set, (b) test set images reconstructed by the VAE, (c) class 1
mapped to other classes, and (d) class 2 mapped to other classes.

target class (a) (b) (c) (d)
0 96.39 85.09 65.95 75.68
1 97.94 98.47 97.71 92.50
2 95.61 95.64 92.74 95.81
3 92.68 95.91 93.29 95.40
4 96.23 96.04 93.80 91.97
5 94.80 89.77 79.58 84.62
6 95.70 88.67 74.25 81.49
7 94.06 94.95 84.37 89.47
8 93.07 86.57 73.41 82.28
9 94.98 89.34 75.09 85.06

Avg. 95.46 93.47 86.51 89.27

translated image to the number of the target domain.

The performance of the classifier can be found in Table 1.
The original classes, after encoding by the VAE, are correctly
classified in 93% of the cases. The images from class 1 and
class 2 translated to all other classes, can be correctly clas-
sified in respectively 86.51% and 89.27% of the cases. Our
translation is thus successful, but not yet optimal. We have not
fully trained all the translation networks until convergence.
All the mappings have been trained between 30K and 100K
iterations. An interesting observation is that the class 0 scores
remarkably worse than all other classes after the transforma-
tion: only 66% and 76% of the images are correctly classi-
fied. This low accuracy can partly be explained by the sub-par
performance of the VAE for class 0, only achieving a classi-
fication accuracy of 85%. This is a stark contrast with the
VAEs for classes 1, 2 and 3, which score as good as the orig-
inal test set on the classification. The images translated to
these classes also score almost as good as the original test
set. By training some of the VAEs and most of the transla-
tion networks further, the classification accuracy gap between
the original test set and the translated set can most probably
be decreased. Following this, we ran experiments perform-
ing translations across images of dogs and cats. Early results
were blurry, which might be caused by the higher variability
on these images due to changes in pose and scale. Morever,
this might be the reason why [26] uses a mask to guide the
translation process.

5. CONCLUSION

We use an architecture combining VAEs and GANs to per-
form unsupervised shape translation across images. We learn
to change shapes in images, while preserving style infor-
mation by learning separate latent space representations and
learning a mapping between these two latent spaces. The
translation model is currently applicable in simple datasets.
Further experimentation needs to be conducted before it is
useful in a broader context.
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