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ABSTRACT

We propose a method that exploits the feedback provided
by visual explanation methods combined with pattern min-
ing techniques in order to identify the relevant class-specific
and class-shared internal units. In addition, we put forward a
patch extraction approach to find faithfully class-specific and
class-shared visual patterns. Contrary to the common prac-
tice in literature, our approach does not require pushing aug-
mented visual patches through the model. Experiments on
different CNN architectures show the effectiveness of the pro-
posed method.

Index Terms— Model Interpretation, Data Mining.

1. INTRODUCTION

Interpretation methods [1, 2, 3, 4, 5] aim at the study of the
representations internally encoded by Convolutional Neural
Networks (CNNs). Despite the effectiveness of these meth-
ods at providing insights on this internal representation, they
suffer from two weaknesses. First, except for [6, 7, 8], it has
not yet been demonstrated, from which relevant and critical
internal units of a model, the visual feedback are drawn. Sec-
ond, in some works [9, 10, 1], it is a common practice to
generate a pool of visual patches per class from a limited set
of images as part of the interpretation procedure. To achieve
this, the patches need to be resized to the input size expected
by the model. This results in the model observing patterns
with size and aspect ratios that significantly differ from those
seen during training [11]. Thus, the provided interpretation
feedback cannot guarantee that it reflects the actual represen-
tations encoded within the model.

To address the above weaknesses, we propose a new per-
spective on interpreting CNNs by exploiting the capabilities
of the well-studied model explanation methods (Fig. 1). This
type of methods produce visualizations which highlights im-
portant region(s) of the input determining the prediction made
by the model. To efficiently identify critical internal units,
we first utilize a model explanation method to generate visual
explanation per input image. Second, a faithful patch gen-
eration procedure is proposed to extract visual patches con-
taining the highlighted regions in the visual explanation. The
faithfulness refers to the process where extraction operation
utilizes the actual internal representations computed from im-
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Fig. 1. Proposed Interpretation method. Visual explanations
are generated by an explanation method, followed by extract-
ing explanation patches showing highlighted parts. Transac-
tion dataset is created via the patches. Finally, a pattern min-
ing algorithm extracts class-specific and class-shared convo-
lutional filters and their corresponding visual patches.

ages with the size and aspect ratios used during the training
phase. Third, the method utilizes indices of the internal units
corresponding to the visual patches from the highlighted re-
gions to create a transaction dataset. Finally, frequent itemset
mining and association rule mining techniques are applied to
the transaction dataset. This results in a set of class-specific
and class-shared rules referring to the relevant internal units
to the group of visual patches with similar patterns.

2. RELATED WORK

Regarding the capability of identifying relevant internal
units, [7, 8] utilizes external datasets with annotated visual
attributes in order to link internal units w.r.t. such annota-
tions. [6] follows a similar methodology in [7], but instead of
looking for relationships w.r.t visual attributes, it looks for re-
lationships with the classes of interest themselves. Different
from [7], our method is independent of pre-defined attributes.
Also, opposite to [6], our method is able to identify both
class-shared and class-specific internal units. [10] conduct
association rule mining, via the Apriori algorithm [12], on
activations from the fully-connected layer computed from
cropped image patches fed to the model. Differently, we use
the activations produced by the last convolutional layer from
complete images. Moreover, we extract the visual patterns
from visualizations generated in an explanation-based ap-
proach. Furthermore, we use the eclat algorithm [13], which



has been proved faster than Apriori [14, 15], for frequent
itemset mining. Finally, our procedure is conducted in a hier-
archical manner to obtain the class-specific and class-shared
frequent itemsets.

3. PROPOSED METHOD

We summarize the proposed method in the following steps:
First, image patches are extracted from the visualizations pro-
duced by an explanation algorithm. Second, a transaction
database from the extracted patches is created. Each record
of this database contains indices of the internal units(s) and
the predicted class label per image patch. Third, a set of as-
sociation rules are learned by finding frequent itemsets from
the internal units indices in the database. These rules assist
with the interpretation of the model by identifying relevant
class-specific and class-shared units. Finally, we generate vi-
sualizations of the input features encoded by these rules.

3.1. Patch Extraction

Consider an image dataset D={Xi, Y i}ni=1 containing n
pairs of image examples Xi with their corresponding class
label Y i. Also, consider Ai, with shape w×h×d, as the ac-
tivation maps produced by d filters in the last convolutional
layer and Ŷ i as the predicted label by a model for the input
example Xi. In the first step, we utilize Grad-CAM [16]
to find input regions relevant to the class Ŷ i predicted by
the model. More specifically, given an input image Xi, the
explanation heatmap Hi is obtained from the last convolu-
tional layer of the model via Grad-CAM. This is followed by
resizing Hi to the size of the input image. Next, the method
extracts a set of image patches with the highest importance
to the given prediction. To do so, a two-step patch extraction
procedure w.r.t the explanation heatmap Hi is applied. We
will now describe these two steps.

Candidate patch extraction. By applying a cropping
window W with size ω×ω at random locations we generate
a set of random patches, P i={pi,1...pi,m}, pertaining to the
input Xi. Next, through Eq. 1, the patches are scored based
on the summation of elements at every location (u, v) in the
region W from the explanation heatmap Hi.

Si = {si,j |si,j=
∑

u,v∈[1...ω]

H[W (u, v)]}, ∀j∈[1,m] (1)

where si,j indicates the score of the patch pi,j and Si is the
set of scores for the patches of the input Xi. In the next step,
the patch pi,j with the highest score is selected and added
to a list named P ′i . This procedure of extracting candidate
patches is repeated k times. At each time, we update the ex-
planation heatmap Hi by setting the region corresponding to
the selected high-scoring patch pi,j , to zero (i.e., Hi[pi,j ]=0).

This is done to avoid extracting duplicate patches in each it-
eration. Finally, this procedure results in a set P ′i containing
k candidate patches.

Relevant Patch Selection. To select the relevant patches,
our method follows an incremental perturbation procedure.
Considering the obtained set P ′i containing the k candidate
patches and a set of relevant patches P ∗i=∅, the image Xi is
perturbed by setting its pixel values corresponding to a patch
to zero. Then, the perturbed image is pushed through the
model to obtain the output score for class label Y i.

More specifically, the input image Xi is perturbed inde-
pendently by each of the patches pi,b∈P ′i until the difference
of the output score from class Y i between two sequential per-
turbation operations reaches below a threshold τprt. In paral-
lel, the list P ∗i is gradually grown by adding the new patches
pi,b considered in each iteration. Through this two-step pro-
cedure, the method can identify patches closely centred in the
highlighted region(s) from explanation heatmap Hi. More-
over, it allows to extract multiple relevant patches that might
occur when an explanation heatmap Hi highlights multiple
non-overlapping regions in the input image. This procedure
is repeated for all images Xi in the dataset. As a result, the
method outputs a list P={P ∗1...P ∗n} including the subsets
P ∗i that contain the important patch(es) for each example i.

3.2. Transaction Database Generation

Transactions are sets of discrete items usually received as in-
put by association rule mining algorithms. Hence, we aim to
convert each image patch pi,b∈P ∗i

into a representation of N
discrete values T i,b={ti,1...ti,N}, namely patch-transaction.
The first N−1 elements of this transaction refer to the index
of convolutional filters, while the last element indicates the
predicted class label Ŷ i. To identify N−1 convolutional fil-
ters per image patch, we utilize the activation maps Ai. These
activation maps Ai are resized to the size of the input im-
age Xi. Then, the window corresponding to the image patch
pi,b on the activation maps is cropped and considered as Api,b

with size ω×ω×d, where d indicates the number of the filters
in the convolutional layer. Next, following Eq. 2, we calculate
the activation response ai,bf from the activation map Api,b

f for
each filter f .

ai,bf =

ω∑
u,v=0

Api,b

f (u, v), ∀f ∈ [1..d] (2)

Next, the index of the (N−1)−top filters with the highest
activation responses ai,bf are selected as the element in the
transaction T i,b. This procedure is repeated for the patches of
images from each class in the dataset. This leads to a transac-
tion dataset T c containing transactions T i,b pertaining to the
patch pi,b of the example Xi from predicted class label Ŷ c.
Accordingly, T={T 1...T c} where c = [1...C] indicates the
set of transaction dataset related to each class c.



3.3. Frequent Itemsets Mining

In this step, the method mines the transaction database
T={T 1...T c} to identify frequent itemsets of convolutional
filter indices. The mined itemsets are both class-specific
as well as commonly occurring among different classes, i.e.
class-shared. Moreover, their support measurement [13] must
be higher than a threshold τsupport. We achieve this by using
eclat algorithm [13]. This algorithm uses the support met-
ric to identify the importance of an itemset. The common
practice in the literature is applying eclat once on the entire
transaction dataset. Different from this, we apply it in a hi-
erarchical manner as the transactions in the database T are
related to the different classes.

In the first level, we identify the frequent itemsets for each
transaction subset T c. This step results in a set of class-
specific frequent itemsets, i.e., I={I1, ..., Ic}. It is worth
noting that the identified frequent itemsets in each set Ic con-
tain the class label c as one item in the itemset. Hence, the
support measurement of the itemsets in I is biased to each
class. Also, there are some frequent itemsets, including just
convolutional filter indices, which appear in different classes
with different support measurements. To cope with this issue,
in the second level, we re-calculate the support of all identi-
fied frequent itemsets in I w.r.t. the transaction database T ,
instead of considering the transaction database T c. That is,
we drop the class label item from the database. This results
in a new set I ′ with new support. Its frequent itemsets are
not directly class-specific, but refer to the convolutional filter
indices which frequently occur in the transaction database for
different class labels.

3.4. Association Rule Mining

In this section we describe how association rule mining algo-
rithms [17] are used to mine a set of class-specific rules Rc

in the form of (A→B) from the identified frequent itemsets
(Sec. 3.3). The notation A and B refer to the antecedent and
the consequent of a rule, respectively. In this algorithm [17],
any item of frequent itemset can be in the antecedent or the
consequent part. Different from this, we apply the constraint
on the followed association rule mining apporach, where A
indicates only the frequent itemset of the convolutional filters
indices and B refer only to the class label. The reason for
that is to find the relation between convolutional filters and a
class label and not between filters and filters. The association
rule mining calculates support and confidence values for each
generated rule. Finally, we select the q−top rules for each
class c following Rc={Rc

e|Rc
e ∈ {argmaxq(Supp(R

c
e) ∗

Conf(Rc
e))} ∀c ∈ [1...C] & e ∈ [1...E − 1]} where, the

term (Supp(Rc
e)∗Conf(Rc

e)) indicates the score of a rule.
Supp and Conf stand for the support and confidence values
of the rule Rc

e. E indicates a set of generated rules for each
class. Finally, we form set R={R1...Rc} that contains infor-
mation about the critical internal convolutional filters relevant
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Fig. 2. Example of multiple visual patches extracted from vi-
sual explanation, proposed by the patch generation operation.

to each class.
Class and filter-relevant visual patterns. Given the as-

sociation rule set R, the method produces two outcomes: (1)
GR a set containing image patches relevant to a group of
class-specific filters, and (2) GF a set containing a group of
image patches relevant to a group of filters. The antecedent
and the consequent of a rule represent the convolutional fil-
ter indices and class label, respectively. Also, these rules re-
fer to a set of frequent itemsets in I which have been mined
from transaction dataset T . Since, each transaction was cre-
ated from an image patch, then we are able to retrieve a group
of image patches indexed to the convolutional filter indices in
the generated association rules in the set R. Similarly, the an-
tecedent of a rule can appear in the rules related to different
classes. Hence, we can retrieve the image patches encoded by
a group of filters, i.e, visual patterns shared among classes.

4. EVALUATION

We evaluate our method on the VGG16 [18] and Resnet50 [19]
architectures, pre-trained on the ImageNet dataset (1000
classes). Results are reported on the validation set, we com-
pare our performance w.r.t. [6]. Based on internal tests, we
set variables q=10, τprt=0.1, and τsupport=0.5.

4.1. Qualitative Analysis: Visual Patterns

The Patch Extraction operation of the proposed method
(Sec.3.1) is able to extract visual patches that are closely cen-
tered in the highlighted region(s) from explanation heatmap
(Fig. 2). It prevents the model from computing activation
maps for massive number of re-scaled patches as a common
practice in the literature [9, 10, 1].

Visual Patterns from Class-shared Units. We aim to il-
lustrate the visual pattern related to a group of filters shared
among classes according to Sec. 3.4. The illustration in Fig. 3
over Resnet50 and VGG16 reveals two interesting observa-
tions. First, consider Fig. 3 (bottom-left) which shows exam-
ples of visual patterns from classes Siberian husky, Alaskan
malamute, Eskimo dog, and Greater Swiss Mountain dog en-
coded by the convolutional filters 1583 and 1634 in Resnet50.
This suggests that classes with visual similarities share convo-
lutional filters. We have observed a similar trend on VGG19
(Fig. 3 bottom-right).



Table 1. Model accuracy comparison when internal units identified by each of the methods are perturbed.
Models/Methods

Ours-5
Acc. / avg. perturb.

Ours-10
Acc. / avg. perturb.

Ours-25
Acc. / avg. perturb.

[6]
Acc. / avg. perturb.

Random
Acc. / avg. perturb.

Baseline
Acc. / avg. perturb.

VGG16 55.17%±0.20 / 6.79 45.67%±0.20 / 10.20 53.91%±0.20 / 8.80 50.53%±0.20 / 5.40 71.39%±0.17 / 10.00 71.59%±0.17 / 0.00
ResNet50 71.11% ±0.17 / 6.79 68.63% ±0.18 / 10.20 71.26% ±0.17 / 8.80 69.74% ±0.18 / 5.44 76.08% ±0.16 / 10.00 76.13%±0.16 / 0.00

Filters: 1583&1634 Filters: 274&446

Filters: 14&109Filters: 329&1622

Fig. 3. Example of visual patterns from different classes rele-
vant to a group of filters in Resnet50(left) and VGG16 (right).

Second, similar patterns in Fig. 3 (top-right) are related
to classes with dissimilar objects such as cardoon, globe arti-
choke, pineapple, fig, sea anemone, and bee. A similar trend
can be seen in Fig. 3 (top-left). Despite visual patterns show-
ing a fish, there are two examples from the class Ambulance
(fourth row). This reveals that this group of filters have en-
coded similar patterns from classes with completely different
objects. To sum up, the proposed method can identify filters
capable of grouping classes based on visual similarities.

Visual Patterns from Class-specific Units. We show the
weighted average of patches relevant to a specific class en-
coded by a given filter. To do so, first, we collect the im-
age patches from each rule for a given filter appearing in the
antecedent. Second, we aggregate the elements in the acti-
vation region corresponding to a patch and consider it as the
weight for that patch. Finally, we compute a weighted aver-
age of the patches. The resulting visualization illustrates the
class-specific pattern mostly focused on by the filter. Fig. 4
illustrates examples from VGG16 over different classes.

F 7_ Tibetan terrier F 22_ American eagle F 62_ CatamountF 36_ Bernese dog

Fig. 4. Weighted average of class-specific images patches en-
coded with filters in VGG16.

4.2. Quantitative Analysis: Filter Importance

We investigate the model accuracy trends when we perturb
the relevant filters identified by each method. We first perturb
the identified class-relevant filters by setting their computed
activation map to zero. Second, we compute the model ac-
curacy for the considered class. This procedure is repeated
for all classes in the dataset. Finally, we report in Table 1 the
mean accuracy across all the classes as a function of the num-
ber of identified units. This should indirectly assess the per-
formance of the interpretation method at identifying critical
internal units. We report performance of the original model
(baseline), a randomly perturbed model (Random), and the
method from [6] modified to only consider the convolutional
layer. Since the proposed method considers the last convo-
lutional layer, we then modify [6] to consider the last convo-
lutional layer. We consider variants of our method where 5,
10, and 25 top filter indices are selected as the elements of
the transactions (Sec. 3.2). As can be seen, Ours-10 leads to
the lowest model accuracy in VGG16 and ResNet50 showing
the efficiency of the proposed method in identifying higher
number of filters.

5. CONCLUSION

We introduced an interpretation method to identify class-
specific/shared internal units by mining explanations of its
predictions. We proposed a patch generation method to find
visual patterns encoded in the internal units. Experiments
showed the efficiency of the proposed method at interpreta-
tion task. Future work will focus on identifying units by con-
sidering the whole architecture and the use of meta-heuristic
approaches for this purpose.
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