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Abstract

The task of object pose estimation has been a challenge

since the early days of computer vision. To estimate the

pose (or viewpoint) of an object, people have mostly looked

at object intrinsic features, such as shape or appearance.

Surprisingly, informative features provided by other, exter-

nal elements in the scene, have so far mostly been ignored.

At the same time, contextual cues have been shown to be

of great benefit for related tasks such as object detection

or action recognition. In this paper, we explore how in-

formation from other objects in the scene can be exploited

for pose estimation. In particular, we look at object con-

figurations. We show that, starting from noisy object de-

tections and pose estimates, exploiting the estimated pose

and location of other objects in the scene can help to esti-

mate the objects’ poses more accurately. We explore both

a camera-centered as well as an object-centered represen-

tation for relations. Experiments on the challenging KITTI

dataset show that object configurations can indeed be used

as a complementary cue to appearance-based pose estima-

tion. In addition, object-centered relational representations

can also assist object detection.

1. Introduction

Object pose or viewpoint estimation is an important

problem for a wide range of applications, including robotics

and road safety systems. Various methods for tackling this

problem have been proposed [16, 20, 21, 27, 31], yet it is

still far from being solved. Especially in ’real-world’ sce-

narios, like the one depicted in the KITTI dataset [10], with

lots of clutter, occlusions, etc. results are still relatively

poor. Context information has been used successfully for

object detection [5, 14, 25] in various forms (stuff, things

and scene related cues). This has been effective in clarify-

ing ambiguous scenarios. Yet, to the best of our knowledge,

context information has not yet been exploited for pose es-

timation.

Imagine you are given the task of predicting the pose

of the objects below the yellow circles in Fig.1. Even

when there is no access to intrinsic features of the objects,

Figure 1. The natural or “desired” configurations in which objects

occur in the world often provide strong cues of their pose. For

instance, it is not difficult to guess the pose of the cars below the

yellow circles by only looking at the rest.

the overall configuration of surrounding objects provides a

strong cue to predict their pose. This can be considered

a Collective Classification problem [32] in which the class

(pose) of one object influences that of another. We face

two challenges towards solving this problem. First, we

need a method to define informative relations between ob-

jects. These relations should be robust to viewpoint changes

and general enough to be applicable to different classes of

objects (i.e. not using class-specific features). Second, a

method to discover and reason about configurations of ob-

jects should be adopted. In this paper, we explore how in-

formation from other objects in the scene can be exploited

for the task of pose estimation. In particular, we look at

configurations of “Things”. We show that, even when start-

ing from a noisy pose estimator, results can be improved by

looking at configurations. Considering the first challenge,

robust and informative relations, we explore both a camera-

centered and an object-centered representation for relations.

Related to the second challenge, we use a simple, yet pow-

erful, method to reason about the configuration of objects.

We capture statistics of typical objects configurations using

kernel density estimation, and combine this information us-

ing collective classification, more specifically a Relational

Neighbor classifier [23].

The main contributions of our work are: First, we show

that considering configurations between objects can be ben-
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eficial for pose estimation: the proposed collective classi-

fication method complements state-of-the-art local pose es-

timation methods. Second, we show the influence of the

Frame of Reference (FoR) – i.e. object-centered or camera-

centered, used to define relations between objects for ob-

ject pose estimation and detection. To our knowledge this

is the first attempt to exploit relations defined between ob-

ject entities via collective classification for the task of pose

estimation. Additionally, we show our scheme can also im-

prove object detection results. The paper is organized as

follows: section 2 presents related work. The following

three sections show how we define and learn relations be-

tween objects in the scene, and how we combine them with

the evidence from local detectors. In section 6 we provide

implementation details, while section 7 describes the exper-

imental results. Finally, we draw conclusions in section 8.

2. Related Work

Some object classes can be easily recognized based on

their material, color and texture, while others are character-

ized predominantly by their shape or appearance. Based on

this particularity, Forsyth et al. [8] introduced the division

of object classes into “Things” and “Stuff”. In this paper

we focus on object classes with defined shape and appear-

ance, the “Things”, and methods exploiting relations and

configurations between them to predict their pose.

Several pose estimation methods have been proposed in

the literature. All of these rely on intrinsic characteristics

of the object class. In the traditional processing pipeline for

pose estimation, first, candidate regions to host object in-

stances are proposed. Secondly, an appearance descriptor

is computed in the area of each candidate region. Finally,

based on a pre-trained model, each descriptor is classified

as one of the possible poses the object may take. Follow-

ing this pipeline, methods have evolved from modeling 2D

views of the classes of interest (e.g. [21]) to reasoning about

object parts in the 3D space [16, 20, 27, 31].

Recently, methods related to structure from motion such

as [1, 2, 12, 37] aim at understanding the full scene layout.

They assume that correspondences between scene elements

such as points, regions and objects across image views or

sequences introduce constraints in the scene behind the im-

ages. These correspondences are exploited and among the

different tasks these methods target, they also perform 3D

pose estimation. These methods have shown impressive

qualitative results. Yet they rely on the availability of im-

age sequences or stereo pairs. Similar to these works we

define relations between scene elements. However, instead

of defining relations between different scene element types

such as points, regions or objects, we focus on relations be-

tween object instances. Additionally, we drop the require-

ment of multiple images for the extraction of evidence - we

only assume the ground plane to be known.

In recent years, learning relations between “Things” has

gained popularity in the computer vision community, par-

ticularly to assist the task of object detection. Early work

[5, 6, 28, 33, 36] represented objects as regions in the im-

age. Then, by learning qualitative 2D spatial relations (e.g.

top-left, far-left ) between them, hypotheses in unlikely ar-

eas were filtered out. Extending this idea, [9, 18, 24] went

beyond object categories and also take the appearance of

the objects into account. More recently, [19, 30] use dis-

criminant relations between objects to learn the collective

appearance of related objects in order to guide the detec-

tion of the individual objects. Similar to these works, we

learn relations between object instances. Different from

these works, in addition to predicting the occurrence of an

object instance, we also predict its pose. Moreover, we rea-

son in a 3D representation of the scene asuming we know

the ground plane, not in the 2D image space. Additionally,

instead of using symbolic spatial relations (e.g. in-front-

of, close, near, far) we use continuous measures to define

relations between entities as in [4, 28, 29]. Finally, dif-

ferent from existing work, we explore the use of relations

defined in an object-centered Frame of Reference. For sim-

plicity, we focus in this paper on the relational aspect of

Collective Classification, i.e. the Within-Network classifi-

cation problem, leaving for future work the analysis of dif-

ferent methods that can be applied for collective inference.

Within-Network classification consists of making a predic-

tion about an object based on the neighboring objects.

3. Relations between Objects

We believe that the pose of an element is not only af-

fected by its individual behavior but also by its behavior

towards other elements in the scene. This idea is inspired

by “Psychological Allocentrism” which states that elements

tend to be interdependent, defining themselves in terms of

the group they are part of, and behaving according to the

norms of the group [17, 34]. Allocentric elements appear

to see themselves as an extension of their in-group. Based

on this description, our method takes into account the group

consistency of each element relative to the group defined by

the other elements in the scene.

In order to measure the level to which an object fits in

a group of objects, first, we need to define relations be-

tween objects. Here, we limit ourselves to purely pairwise

relations. We define these relations in two different ways,

by changing the location and orientation of the frame of

reference (FoR). This results in camera-centered (CC) and

object-centered (OC) relations. We define object-centered

relations between objects as follows. First an object oi is

selected and the frame of reference is centered on it with the

Z-axis facing in the frontal direction of the object (see Fig-

ure 2b). Then, we measure the relative location and pose of

each of the other objects oj , one at a time, producing a rela-



Figure 2. Spatial relations between objects. a) Camera-centered

relations, b) object-centered relations. Note the difference be-

tween relative X and Z values.

tional descriptor rij = (rxij , ryij , rzij , rθij). For an image

with m objects a total of (m(m− 1)) pairwise relations are

extracted. In practice we ignore ryij since all the objects

we consider are found on the ground plane so ryij = 0 in

all cases. As a baseline, we also perform experiments with

camera-centered relations, as used traditionally. For these,

we use the same relational descriptor as above, yet with ev-

erything measured relative to a frame of reference attached

to the camera (see Figure 2a). Note that rxCC
ij 6= rxOC

ij and

rzCC
ij 6= rzOC

ij , but rθCC
ij = rθOC

ij .

4. Learning

4.1. Allocentric Pose Estimation

With allocentric pose estimation, we refer to the task of

estimating the pose θi of an object oi purely based on the

objects in its neighborhood Ni. In our experiments, Ni is

the set containing all the other objects oj in the scene. This

pose is estimated as follows:

θ∗i = argmax
θi

(pRN(oi|Ni)) (1)

where θi belongs to the discrete set of possible poses and

pRN(θi|Ni) is a probabilistic Relational Neighbor classi-

fier (pRN) as introduced in [23]. pRN is a simple method,

yet with strong representative power, that can take advan-

tage of the underlying structure between elements in a net-

work. It has been successfully used, on text datasets, for

social network analysis, author collaboration detection and

suspicion scoring. This classifier operates in a node-centric

fashion meaning that it processes one object oi at a time

based on a set of m objects oj in its neighborhood Ni. It is

defined as follows:

pRN(oi|Ni) =
1

Z

∑

j∈Ni

p(oi|oj)p(ôj) (2)

This classifier is composed by three terms: p(oi|oj),
which expresses the influence of the neighboring object oj
on the unknown object oi; the term p(ôj) which measures

the confidence on the neighbor oj ; and the normalization

term Z =
∑

j∈Ni
p(ôj).

Figure 3. Distribution of object-centered relations for cars with

the same pose (a) and opposite pose (b) respectively .

In a perfect scenario, where all the objects are accurately

detected, the term p(ôj) = 1, since we are certain of their

occurrence, and the normalizer Z corresponds the number

of neighboring objects. In our setting, we define the in-

fluence term p(oi|oj) as p(oi|rij). Using Bayes’ rule we

estimate p(oi|rij) as the posterior:

p(oi|rij) =
p(rij |oi)p(oi)

p(rij |oi)p(oi) + p(rij |¬oi)p(¬oi)
(3)

To obtain the components of Eq.3, first, we run the lo-

cal detector on a validation set with annotated objects pro-

ducing a set of hypotheses per image. Then we label the

hypotheses as true positives (TP) or false positives (FP)

based on the Pascal VOC matching criterion [7]. We fol-

low the procedure of Sec.3 to define pairwise relations rij
between the hypotheses reported for each image. Relations

are divided in two groups. One group contains relations in

which both participants are TP hypotheses and the second

group contains relations in which at least one participant

is a FP hypothesis. Finally, the relations on these groups

are used via Kernel Density Estimation (KDE) to estimate

p(rij |oi) and p(rij |¬oi) respectively. This method captures

the statistics of typical configurations. For instance, when

applied on top of OC relations, it effectively encodes that

cars with the same pose tend to be one behind the other -

as when driving in the same lane, while cars with opposite

poses are more likely to be driving on the left - as in oppo-

site lanes (see figure 3). The priors p(oi) and p(¬oi) of the

object occurring or not at the given location, are estimated

as the percentage of TP hypotheses and FP hypotheses in

the validation set, respectively.

4.2. Working with noisy detections

In practice, state-of-the-art object detectors are not per-

fect and produce many false hypotheses. Moreover, the lo-

cation of true predictions are also noisy, while the pose is of-

ten simply wrong. For these reasons the confidence on the

hypotheses predicted by the local detector should be con-

sidered during the voting procedure of Eq.2, via p(ôj). We

define the term p(ôj) in two different ways depending on



the objective of the classification. In this paper we focus

mainly on the task of object pose estimation and as a side

experiment in re-ranking object detections (see Sec.7.2).

Pose Estimation: For the task of object pose estimation,

we estimate p(ôj) ∼ p(θ̂j) aiming to compensate for the

noise in the poses used to compute rij . Since the scores

given as output by state-of-the-art pose aware detectors are

indications of the localization of the object rather than of its

pose, we exploit the information from the confusion matrix

of the pose estimator. Given a 3D object oj with estimated

continuous pose θ̂j (see Sec. 6), we estimate p(ôj) by per-

forming a linear interpolation to its nearby discrete poses

θlow and θtop using their corresponding responses p(θlow)
and p(θtop) from the diagonal of the confusion table.

p(θ̂j) = p(θlow) + (p(θtop)− p(θlow))
(θ̂j − θlow)

(θtop − θlow)
(4)

Object detection: For this task, we need to put more em-

phasis on the occurrence of the object rather than its pose.

For this reason, we estimate ˆp(oj) through a probabilistic

local classifier that takes into account the detection score sj
of the predicted hypothesis ôj . We consider the posterior of

the object occurrence given its detection score as the output

of the local classifier, p(ôj) = p(oj |sj). We compute this

posterior following the procedure of [28]:

p(oj |sj) =
p(sj |oj)p(oj)

p(sj |oj)p(oj) + p(sj |¬oj)p(¬oj)
(5)

To obtain the components of this equation we perform a

procedure similar to the one done for Eq.3 up to the point

were hypotheses are labeled as TPs or FPs. Then, consider-

ing the TP and FP hypotheses we compute the conditionals

p(s|o) and p(s|¬o) respectively based on KDE. Finally, the

priors p(o) and p(¬o) are estimated in the same way as in

Eq.3. As a result, p(oj |sj) will express the probability of

a hypothesis being correct given its detection score. This

procedure allows us to plug-in any standard object detector

in our method.

5. Modeling consistency between local appear-

ance and allocentric behavior

At this point, we have two methods to estimate the prob-

ability of a certain pose for an object hypothesis oi: based

on its intrinsic features, as evaluated by a traditional pose

estimator, and based on its neighborhood Ni, respectively.

The reader should note the “competitive” behavior of these

two methods. While the local classifier (lc) pulls the de-

cision towards individual features, the relational classifier

(rc) (Eq.2) pulls it towards the collective feature of group

fitting. Given the “competitive” nature of these classifiers,

local and relational, we need to find a method to reconcile

them.

To achieve this we follow a method similar to [28].

First, we collect the responses of the local (Eq.5) and re-

lational (Eq.2) classifiers on a validation set, giving us

score pairs S = (slc, src) for each object hypothesis o.

Then we group these score pairs for TP and FP hypothe-

ses. At test time, we estimate p(S|o) and p(S|¬o) via

KDE. These terms are used in the equation p(o|S) =
p(S|o)p(o)/(

∑
(o,¬o) p(S|o)p(o)) to estimate the desired

posterior.

6. Implementation Details

The focus of this paper is on the study of how relations

between objects can assist the task of object pose estima-

tion. For this reason rather than proposing our own object

detector and pose estimator we use state-of-the-art detectors

to acquire evidence of objects in the scene. To show the gen-

erality of our method, we build on two different detectors /

pose estimators, namely those proposed in [21] and [12].

Both methods are based on the popular deformable parts

model of [26], and both of them jointly tackle the prob-

lems of object detection and pose estimation. We use them

as off-the-shelve detectors with default parameters. These

detectors, separately, feed our framework with confidence

scores, locations (2D bounding box) and poses of object hy-

potheses discretized into 8 and 16 partitions respectively.

Then, using a stereo pair and the algorithm for efficient

large-scale stereo matching proposed in [11] we obtain a

3D point cloud of the scene. To obtain the 3D location of

the object, we project the point cloud into the image plane

and take as location the 3D point at the bottom center of

the bounding box predicted by the detector. For the 3D size

of the object (used purely for visualization purposes), we

use the mean width, length and height of 3D annotations

in the training data. Though this is not very accurate, it is

an approximation that worked well in practice. Reasoning

about the relative location of objects permits the usage of

alternative methods (e.g. [3], [15] and [22]) that focus on

building 2.5D-3D scene representations from still images

in cases where stereo pairs are not available. It should be

noted that the stereo pairs are used solely to estimate the

3D location of the objects and not to derive information

(e.g. 3D shape) that can be used to estimate the pose of

the object. Additionally, this dependence on relative loca-

tion rather than shape/volume, regions or scene class, sets

our work in the middle between works based on 2.5D and

works from Holistic Scene Understanding.

For the pose, the detectors provide a discrete angle α of

the object as seen by the camera. From this angle we obtain

a continuous azimuth angle θ in the world coordinate frame

by back projecting the object o on the ground plane. To

measure the certainty of this estimation during testing, we

perform a linear interpolation of the estimated azimuth an-

gle using the closest discrete pose angles and the confusion



table of the local pose estimator as discussed in Sec. 4.2.

Since one of our objectives is to evaluate the influence of the

frame of reference for defining informative relations, we de-

fine relations using both CC and OC FoRs. The procedure

is directly applied for the case of camera-centered relations.

For object-centered relations an additional step is required

where the FoR should be centered in the trajector object be-

fore any relation attribute can be measured (see Section 3).

When performing Kernel Density Estimation, f(x) =
1
nh

∑n

i=1 K(x−xi

h
), K is a gaussian kernel, xi represents

each of the n observations (detection score or pairwise re-

lations) gathered from the annotated images, and h is the

bandwidth value. This h value is obtained in a data-driven

fashion using Silverman’s Rule of Thumb [35]. For the case

of Multivariate KDE, we employ kernel products.

7. Evaluation

7.1. Dataset

Most pose estimation datasets do not include groups of

objects in images. Usually, there is just a single object in

the main focus of the picture. This reduces the datasets in

which the proposed method could be evaluated to one, the

KITTI benchmark [10]. We run experiments on the object

detection set of KITTI with car as the class of interest. We

evaluate the influence of the FoR when defining relations

between objects in both ideal (annotated) and real (esti-

mated) world settings. For the ideal setting, the dataset pro-

vides 3D location and pose vectors for the objects. For the

real setting, it provides stereo pairs for each scene and ob-

ject annotations that allow us to build methods to learn and

evaluate the configurations between object instances. Addi-

tionally, the multiple cars occurring in each image provide

a challenging realistic scenario with occlusions and clutter

that will be useful to evaluate our proposed allocentric pose

estimator. We evaluate against all the object annotations de-

spite their occlusion level and considered images with more

than two objects. We split the training set of the KITTI

dataset [10] into four subsets. The first quarter of the set

is used for training the relational classifier and estimating

the pose estimator confusion matrix. The second is used for

validation and learning the combination of the local and the

relational classifier. The third and fourth quarters are used

for testing. We run experiments in 5 different splits of data.

7.2. Experiments

7.2.1 Pose Estimation

To evaluate pose estimation we show the Mean Aver-

age Precision in Pose Estimation (MPPE) as presented in

[13, 20, 21, 27, 31]. MPPE is computed as the average of

the diagonal of the class-normalized confusion matrix of the

pose classifier. In our work MPPE is computed from hy-

potheses that are assumed correct based on the Pascal VOC

Method testSet

Ideal Local Classifier (8 poses) 0.47

Ideal Local Classifier (16 poses) 0.37
Table 1. Pose Estimation Performance in the Ideal Setting (MPPE

values per method).

intersection/union criterion [7], as in prior work. Both the

baseline and our method start from the same initial set of

hypotheses. We report results in four sets of experiments.

Ideal Scenario Experiment: The first experiment aims

at answering the question: “How much information about

the object’s pose can be obtained based on the locations

and poses of objects in its neighborhood?”. To this end,

we consider the ideal scenario, where the local object de-

tector and pose estimator are 100% accurate for the objects

in the neighborhood. In this scenario all the objects of inter-

est in the scene have been detected and their pose has been

accurately predicted. For this experiment we use ground-

truth annotations from the dataset. The pose of each object

is then predicted based on the ground truth locations and

poses in its neighborhood. The objective of this experiment

is to present the upper limit of the performance that the Re-

lational Classifier (RC) used for allocentric pose estimation

can achieve in an ideal setting on the current dataset. We

compare 2 ideal allocentric pose estimators that are able to

predict 8 and 16 poses respectively.

Discussion: Table 1 shows that, in an ideal scenario,

the allocentric pose estimator takes advantage of finer dis-

cretization of object poses. While the absolute number is

lower for the 16 poses classifier, with twice as many out-

put labels this is a significantly harder problem. This ex-

periment shows the upper limits in performance that can be

expected from allocentric pose estimation using local de-

tectors [12, 21]. Based only on context information, it is

not possible to accurately estimate the object’s pose. At the

same time, this upper bound is similar or even higher than

what current state-of-the-art local detectors can obtain (see

below), and therefore using context information to improve

pose estimation results seems promising.

Real Scenario Experiment: This experiment starts

from the local detectors [12, 21] introduced in Section 6.

We define object-centered relations between the 3D hy-

potheses in the scene (i.e. the 2D object detection back pro-

jected onto the ground plane ) and perform pose estimation

based on the method proposed in Section 3. The objective

of this experiment is to evaluate: a) the performance of the

local pose estimators, b) the performance of pose estima-

tion based on object relations alone, and c) the changes in

performance brought by the method proposed in Sec.5 for

modeling the consistency of local and relational classifiers.

We report results on two sets. The first set runs on the raw

output of the baseline detectors, while the second set adds a

3D Non-Maximum Suppression (3DNMS) pre-processing



testSet testSet (3DNMS)

LC [21] RC LC+RC LC [21] RC LC+RC

0.27 0.20 0.30 0.29 0.20 0.31

testSet testSet (3DNMS)

LC [12] RC LC+RC LC [12] RC LC+RC

0.55 0.27 0.57 0.57 0.24 0.58
Table 2. Mean Pose Estimation Performance in the Real Sce-

nario (MPPE values per method). LC (Local Classifier), for their

respective baselines. RC (Relational Classifier).

step to remove overlapping hypotheses. Given a set of 3D

hypotheses oi we suppress all the hypotheses that are closer

than a threshold value t. This value is heuristically esti-

mated from the training set, by estimating the mean width

of the objects of interest. Any object closer than a factor of

0.8 is assumed to overlap and is suppressed.

Discussion: The results of this experiment (see table 2)

show it is possible, also in a real scenario to estimate, at

least to some extent, the pose of objects by looking at the

poses and locations of other objects – even if these poses

and locations are noisy themselves. While the performance

of the relational classifier alone is lower than the one ob-

tained by the local classifier, it is significantly above the

chance level (12.5% for the 8-poses [21] setting and 6.25%

for the 16-poses [12] setting). Moreover, the combination of

both local and relational classifier brings a mean improve-

ment, over the local classifier, of 2.5% and 1.7% with

standard deviation 0.7% and 0.6%, on [21] and [12] respec-

tively. This indicates that the obtained improvement is in-

deed significant. Additionally, this shows that information

encoded by our allocentric pose estimator is complementary

to the local detectors and can help in scenarios where evi-

dence of multiple object instances can be obtained. As de-

picted in Fig.4 the inclusion of object configurations helps

to fix some of the, initially, wrongly estimated poses. This

example also shows, that even for the case of FP hypothe-

ses, our method predicts poses for objects that could have

occurred in such locations.

We additionally tried a variation of this setting where

pose information is ignored when defining relations be-

tween object instances. As a result, reasoning will be per-

formed based purely on relative locations between objects.

As expected, allocentric pose estimation in this setting has

lower performance. In fact, its performance is close to

chance level and is 15% lower than the setting where re-

lations include pose information. Given these observations,

we conclude that object pose information plays an impor-

tant role when modeling configurations between object in-

stances and that it is an intrinsic feature that must be consid-

ered in future algorithms that take into account contextual

features for reasoning. This is also a strong evidence that

we are dealing with a true collective classification problem

as the pose of one object depends on the pose of the other

object hypotheses

Initial Pose Prediction Allocentric Pose Prediction

object hypotheses

Initial Pose Prediction Allocentric Pose Prediction

Figure 4. Effect of considering object configurations for pose esti-

mation. Per set: Top image, hypotheses reported by the detector;

bottom left, in bird’s eye view, initial pose prediction given by the

standard pose estimator; bottom right, in bird’s eye view, pose pre-

diction when considering object configurations.

ones. This motivates the use of pRN.

7.2.2 Object Verification

While in this paper we focus on the task of pose estimation,

the configuration of objects and their poses in a neighbor-

hood around a given object can also be exploited for object

verification, i.e. to correct errors of the object detector. This

is tested in the next experiment. We define Object Verifica-

tion as the task of re-ranking the set of hypotheses given by

a detector in such a way that the most likely hypotheses get

a higher score. For this task we need a relational classifier

that predicts the occurrence of an object oi given the objects

in its neighborhood Ni. We define this classifier similar

to the pRN classifier (Eq.2) presented in Sec.4.2 where the

weighting factor is assumed to be equal to p(oj |sj) and is

computed using Eq.5. The conditional p(oi|oj) is estimated

using Bayes’ rule as in Eq.3 . The task of object verification

is evaluated based on the criterion used in Pascal VOC [7].

We report results using Average Precision (AP) as perfor-

mance metric on the testing set described before. Addition-

ally, we report the performance of using traditional camera-

centered relations and our proposed object-centered Rela-

tions. Again we show results for the two selected object de-



❍
❍
❍
❍
❍

LC

RC
none CCRel. OCRel

None - 0.342 0.347

[21] 0.600 0.622 0.629

None - 0.300 0.314

[12] 0.637 0.666 0.671
Table 3. Object Verification Performance (AP) related to the

baseline [21] and [12]. LC (Local Classifier), RC (Relational

Classifier), CCRel (Camera-Centered Relations), OCRel (Object-

Centered Relations).

❍
❍
❍
❍
❍

LC

RC
none CCRel. OCRel

None - 0.396 0.399

[21] 0.676 0.685 0.682

None - 0.353 0.364

[12] 0.717 0.724 0.725
Table 4. Object Verification Performance (AP) related to the

baseline [21] and [12] using 3DNMS. LC (Local Classifier),

RC (Relational Classifier), CCRel (Camera-Centered Relations),

OCRel (Object-Centered Relations).

tectors, relational classifiers based on them, and the combi-

nation of the two (Table 3). Considering the fact that we are

reasoning in 3D Space, we repeat the previous object ver-

ification experiment adding a pre-processing 3DNMS step

applied on the 3D hypotheses (Table 4).

Discussion: The change in performance brought by the

combination of local and relational classifiers, over the local

classifier alone, confirms that indeed the proposed relations

assist the task of object verification. In our experiments

we obtained mean improvements of 3% and 4% for [21]

and [12] baselines respectively. Furthermore, it is remark-

able how the relational classifiers (RC) are clearly above

their respective chance levels, 24% and 14%, by 10% and

16% respectively. These chance levels correspond to the

true positive - false positive ratio of the baselines [21] and

[12], respectively Table 4 shows how using the “heuristic”

3DNMS step improves all the baselines by 7%. However,

the improvement brought by contextual information in that

case is reduced to 1% for both detectors. This can be ex-

plained by the fact that the increase in performance given

by the 3DNMS makes the local classifier better, leaving less

room for improvement. One might argue that our distance

based 3DNMS is sub-optimal when compared with meth-

ods used in Holistic Scene Understanding for NMS based

on volumetric overlap. However, our experiments present-

ing 3DNMS results should be considered as just a hint of

additional advantages that can be obtained from reasoning

in a 3D rather than a 2D space. Future work will address

reasoning about the volumetric properties of objects and the

effect of the re-estimated poses on the aspect ratios of the

hypotheses initially predicted by the detector.

7.2.3 Object-centered or Camera-centered

To analyze the effect of the FoR when defining relations

between objects, we evaluated the performance of the rela-

tional classifier with camera-centered relations and object-

centered relations respectively (Sec. 3). As in the previous

experiments, we present results in an ideal and realistic sce-

nario. Furthermore, we add an experiment on the realistic

scenario where we apply 3DNMS as a preprocessing step.

This complements the experiments in Sec 7.2.2 involving

these types of relations and will provides us an overview of

their effect in such tasks.

Relations Ideal Real Real (3DNMS)

[21] CCRel. 0.44 0.20 0.19

[21] OCRel. 0.47 0.20 0.20

[12] CCRel. 0.32 0.24 0.22

[12] OCRel. 0.37 0.27 0.24
Table 5. Effect of the Frame of Reference when defining relations

for pose estimation (MPPE values per method). CCRel (Camera-

Centered Relations), OCRel (Object-Centered Relations).

Discussion: On the KITTI dataset, the difference be-

tween the object-centered and camera-centered settings

seems to be minimal for object detection (Table 3). While

the object-centered setting does not depend on the camera

viewpoint and therefore can be expected to generalize better

to different camera setups (e.g. surveillance cameras as op-

posed to cameras mounted on a vehicle), the camera view-

points in the KITTI dataset are consistent, and therefore the

camera-centered setting works equally well than the object-

centered one. On the pose estimation problem, previous ex-

periments proved that pose information plays an important

role when defining relations. Here object-centered relations

bring an improvement of ∼2% over their camera-centered

counterparts (Table 5).

8. Conclusions

In this paper we presented an early attempt to reason

about object configurations to estimate and refine object

poses. Even when, in isolation, allocentric pose estima-

tion does not solve the object pose estimation problem, ex-

perimental results suggest that the proposed method com-

plements local pose estimators. Furthermore, its perfor-

mance, above chance levels, makes it a good alternative

for cases where local information about the unknown ob-

ject is unavailable (i.e. when augmenting a scene with vir-

tual objects). Experiments also prove the relevance of pose

information when describing relations between object in-

stances; a feature that has been largely ignored in existing

work that exploits contextual information, even in the con-

text of object verification. This stresses the use of relative

pose information as a feature to describe object relations.

Though there is room for improvement, our results support



our hypothesis that there is something to gain from object

configurations when predicting object poses. Complement-

ing this, experiments show how defining relations from an

object-centered perspective can increase performance in ob-

ject pose estimation and detection. Future work will focus

on two directions: first, the combination of allocentric pose

estimation with more advanced local pose estimators that

can reason about the 3D geometry of the object; and sec-

ond, the use of more advanced relational classifiers and col-

lective classification methods to reason about object config-

urations.
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