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Abstract

It is by now generally accepted that reasoning about the

relationships between objects (and object hypotheses) can

improve the accuracy of object detection methods. Rela-

tions between objects allow to reject inconsistent hypothe-

ses and reduce the uncertainty of the initial hypotheses.

However, most methods to date reason about object rela-

tions in a relatively crude way. In this paper we propose

an alternative using cautious inference. Building on ideas

from Collective Classification, we favor the most confident

hypotheses as sources of contextual information and give

higher relevance to the object relations observed during

training. Additionally, we propose to cluster the pairwise

relations into relationships. Our experiments on part of the

KITTI data benchmark and the MIT StreetScenes dataset

show that both steps improve the performance of relational

classifiers.

1. Introduction

Recently, contextual information has been used in sev-

eral computer vision tasks including segmentation [9, 11,

12] and object detection [5, 13, 24]. For the object detec-

tion problem, relations between object instances have been

used to remove or reduce the uncertainty in hypotheses pre-

dicted by appearance-based detectors. A common pipeline

in these works proceeds as follows: 1) an initial set of object

hypotheses is obtained using an object detector; 2) for each

hypothesis, a set of neighbor objects is selected as sources

of contextual information; and 3) information from these

neighboring objects is used to re-evaluate the initial object.

The underlying methods differ in the way they define neigh-

boring objects. Some works (e.g. [5, 23]) use all the other

objects as neighbors, while others (e.g. [9]) use only the ob-

jects in a spatial vicinity. We refer to these two types as

“global” and “near” neighborhoods, and empirically evalu-

ate which setting yields best results.

For inference, the neighboring object hypotheses are

commonly considered without taking into account the cer-

tainty of their prediction. As as result, all the neighbors par-

ticipate for the classification of each object [23]. Following

the literature [17, 18] on Collective Classification [25], in-

stead, we propose an iterative scheme where we first clas-

sify the objects with most certain relational information,

and then use these to bootstrap the predictions of the other

objects. This is useful in collective classification tasks, like

object detection, where multiple possibly related objects all

need to be classified. Following the terminology of [17],

we refer to these two inference variants as “aggressive” or

“cautious” inference. Again, we empirically evaluate the

added value of cautious vs. aggressive inference.

Furthermore, probabilities or likelihoods are typically

computed based on the frequency of occurrences of object

relations in the training data. Usually, this is computed rel-

ative to all the relations involving two objects of the same

class. This is an example of classical homophily-based re-

lational classification. Homophily is the tendency of indi-

viduals to associate with others of the same class. This

homophily-based model is inspired by observations in a vast

array of network studies, e.g. [19], in both explicitly de-

fined and latent-assumed networks. In homophily-based re-

lational classification, objects are expected to give higher

support to hypotheses belonging to the same class [16] in-

dependent of the relation between them. Here we also in-

vestigate an alternative definition for homophily, based on

the relation between object instances rather than strictly fo-

cused on the classes of the objects. Following this idea, we

assume that the observed pairwise relations between objects

belong to a set of underlying relationships that determine

how the different objects are associated with each other. In

this setting, during inference, only a subset of the relations

(those covered by the same relationship) are involved in the

estimation of probabilities or likelihoods. We refer to these

two cases as “class-based homophily” and “relation-based

homophily”, and empirically evaluate their respective mer-

its. Let us illustrate these ideas by an example. Imagine

you are given the task of predicting whether the green box

in Fig. 1 (corresponding to an object hypothesis) contains

a car or not, based on the context given by the objects in

the other bounding boxes (Fig. 1a). Shouldn’t the true hy-

potheses, in blue, have a higher influence on the prediction

than the false hypotheses, in red? Furthermore, focusing on

the true hypotheses (Figure 1b), wouldn’t it be more intu-

itive to take into account also the color-codes of the objects?
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objects of the same class. Focusing on the relational as-

pect of the problem, we formulate our object classification

problem as a Within-Network classification problem, which

consists of making a prediction about an object based on the

neighboring objects.

A recent group of works [13, 24] promotes the use of

groups of objects with consistent relations among them.

Following this idea, [24] exploits explicitly defined pairwise

relations to learn the collective appearance of object pairs.

Taking this idea further, [13] removes the requirement of ex-

plicitly defined relations and discovers composite relations

to learn the appearance of the group of objects. Our proce-

dure of recovering underlying relationships and their corre-

sponding densities is quite similar to the Hough transform

and mode finding approach in [13]. However, different from

[13] and [24], which use underlying groups towards learn-

ing the collective appearance of the groups, we discover the

underlying groups as a means to improve object detection

accuracy.

3. Object Relations as Source of Context

Before we discuss how relations between objects can be

used as a source of contextual information, we introduce the

representations for objects and relations used in this paper.

Given an image, we use an object detector to collect a set

of object hypotheses O = {o1, o2, ..., on} of the class of

interest. Each object hypothesis oi is represented as a tuple

oi = (xi, yi, fi, si) where (xi, yi) represents the location of

the center of the bounding box of the object, fi represents

additional object-related features (e.g. aspect ratio or scale

of the bounding box), and si the detection score reported

by the detector. Given the set of hypotheses O, we define

pairwise relations rij between each pair of objects oi and

oj . In section 5 we describe how we compute the relative

attributes that define the relations rij .

3.1. Inference

In this paper we follow the principle proposed in [17]

that stresses that instances are not independent, on the con-

trary, “in some classification tasks they are implicitly or ex-

plicitly related”. Therefore, we estimate the degree to which

an object oi fits into the scene based on its relations with the

other objects in the scene. This is a Collective Classification

[25] problem in which the occurrence (class) of an object

influences that of another. For simplicity we focus on the

case of a single object class for now. To take into account

the interdependencies between objects based on their rela-

tions we re-rank the predicted object hypotheses using the

Weighted Vote Relational Neighbor Classifier (wvRN) [16].

wvRN, earlier known as Probabilistic Relational Neighbor

(pRN) is a simple method that takes advantage of the un-

derlying structure between related elements. It is a node-

centric method, that is, it processes one object oi at a time

taking into account a set of n objects in its neighborhood

Ni. wvRN estimates p(oi|Ni), the probability that oi cor-

responds to a true object occurrence given its neighborhood

Ni, as the weighted mean of the class-membership proba-

bilities predicted by the entities in Ni (see Fig. 2a). It is

defined as follows:

wvRN(oi|Ni) =
1

z

∑

oj∈Ni

p(oi|rij).wj (1)

with z a normalization factor and wj taking into account

the noise in the object detector (see below). wvRN(oi|Ni)
is the relational score of object oi given its neighborhood

Ni. The conditional p(oi|rij) represents the probability of

object oi occurring given its relation rij with object oj . Us-

ing Bayes’ Rule we estimate p(oi|rij) as the posterior:

p(oi|rij) =
p(rij |oi)p(oi)

p(rij |oi)p(oi) + p(rij |¬oi)p(¬oi)
(2)

The components of Eq.2 are obtained through the follow-

ing procedure. First, we run the local detector on a training

set with annotated objects producing a set of hypotheses per

image. Then we label the hypotheses as true positives (TP)

or false positives (FP) based on the Pascal VOC [6] match-

ing criterion. We define pairwise relations rij between the

hypotheses reported for each image. Relations are divided

in two groups. One group contains relations in which both

participants are TP hypotheses and the second group con-

tains relations in which at least one participant is a FP hy-

pothesis. Finally, the relations of these groups are used via

Kernel Density Estimation (KDE) to estimate p(rij |oi) and

p(rij |¬oi) respectively. This method captures the statistics

of typical configurations. The priors p(o) and p(¬o) of the

object occurring or not at the given location, are estimated

as the percentage of TP hypotheses and FP hypotheses in

the training set, respectively.

The weighting factor wj of equation 1 takes into account

the noise that is introduced by the object detector in the

neighboring objects oj . We estimate wj using a Probabilis-

tic Local Classifier that takes into account the score sj pro-

vided by the object detector for its respective hypothesis oj .

The output of this classifier will be the posterior p(oj |sj)
of the occurrence of the object oj given its score sj . We

compute this posterior following the procedure presented in

[23]:

wj = p(oj |sj) =
p(sj |oj)p(oj)

p(sj |oj)p(oj) + p(sj |¬oj)p(¬oj)
(3)

The components of this equation are obtained following

a procedure similar to that for Eq.2 up to the point where

hypotheses are labeled as TPs or FPs. Then, based on the

TP and FP hypotheses we compute the conditionals p(s|o)
and p(s|¬o) respectively via KDE. Finally, the priors p(o)
and p(¬o) are estimated in the same way as in Eq.2. As a

result, p(oj |sj) expresses the probability of a hypothesis be-





that links them. Additionally, comparing the relation-based

density distribution (Fig. 2d) with its class-based equivalent

(Fig. 2b), one can see that considering underlying relation-

ships has the effect of removing the bias towards the most

frequent pairwise relation that is introduced when all the

pairwise relations are used for inference (Fig. 2b).

4. Combining Information Cues

At this point, we have two methods to estimate the proba-

bility of the occurrence of an object hypothesis oi: the local

classifier, based on appearance, as evaluated by the object

detector, and the relational classifier, based on its neighbor-

hood Ni. The reader should note that while the local classi-

fier pulls the decision towards individual features, the rela-

tional classifier (Eq.4) pulls it towards the collective feature

of group fitting. Given this opposite behavior of our clas-

sifiers, local and relational, we need a method to combine

them. We follow a method similar to [23]. We use a valida-

tion set of images on which we run the object detector. After

defining pairwise relations between object hypotheses, we

label them as TP and FP hypotheses using the annotations.

Then, for each object hypothesis, we compute the score pair

(slc,src) of the local and relational classifier for each image.

For the local classifier, we use the output of Eq.3, applied on

o. For the Relational Classifier we use the response of Eq.4.

Using these pairs we estimate the conditionals p(slc, src|o)

and p(slc, src|¬o) via Kernel Density Estimation. Finally, the

probabilistic score with enforced consistency is estimated as

the posterior p(o|slc, src) =
p(slc,src|o)p(o)

p(slc,src|o)p(o)+p(slc,src|¬o)p(¬o)

using Bayes’ Rule with p(o) and p(¬o) determined as for

Eq. 2.

5. Implementation Details

This paper studies the impact of cautious inference,

when reasoning about object relations, for object detection.

For this reason rather than proposing our own object detec-

tor we use a state-of-the-art detector to acquire evidence of

objects in the scene. We build on top of the detector pro-

posed in [14]1 which is based on the popular deformable

parts model of [7]; it is designed to jointly tackle the prob-

lems of object detection and pose estimation. We use it as

an off-the-shelf detector. This detector feeds our framework

with confidence scores, locations (2D bounding box) and

poses of object hypotheses discretized into 8 partitions.

We define relations between objects in three formats.

The first format (RF1) considers differences in x- and y-

coordinates (∆xij ,∆yij) in the 2D image space and the rela-

tive pose ∆θij of the pose θ predicted by the object detector

producing a triplet r
(RF1)
ij = (∆xij ,∆yij ,∆θij). The second

format (RF2) is based on [13]. In this work relations are

represented as a tuple r
(RF2)
ij = (rxij , ryij , rρij , raij) where

1http://agamenon.tsc.uah.es/Personales/rlopez/data/pose-estimation/

rxij = xi − xj
ρi
ρj

and ryij = yi − yj
ρi
ρj

. The factor ρi

ρj
normal-

izes the translation by object size and is used as a proxy for

handling the global scale of the scene. rρij = ρi
ρj

denotes the

relative scale ρi (the scale of object oi) and is computed as

the square root of the bounding box area of the object. Fi-

nally, raij = ai

aj
represents the relative viewpoint, where the

viewpoint ai is encoded by the aspect ratio of the bounding

box. The third format (RF3), is purely spatial and considers

differences in x- and y-coordinates (∆xij ,∆yij) only in the

2D image space. This is used in cases where object pose

annotations are not available.

In our experiments relationships are discovered using the

XMeans [4] clustering algorithm. XMeans is an iterative

version of an accelerated KMeans in which the user only

provides the range in which K may be located. We provide

the range [4, 64] for K to the XMeans algorithm.

Kernel Density Estimation (KDE), with f(x) =
1
nh

∑n
i=1 K(x−xi

h
) is performed using publicly available

code2. We use a gaussian kernel K, xi represents each of

the n observations (detection score or pairwise relations)

gathered from the annotated images, and h is the bandwidth

value. This h value is obtained in a data-driven fashion

using Silverman’s Rule of Thumb [27] , h = 1.06σ̂n−1/5,

where σ̂ = min(std(x), iqr(x)). Kernel products are used for

the case of Multivariate KDE.

6. Evaluation

Datasets: We run experiments in the object detection set

of the KITTI benchmark [10]. We focus on urban scenes

with car as the class of interest. This dataset contains mul-

tiple cars occurring in each image. This provides a chal-

lenging realistic scenario with occlusions and clutter that is

useful to evaluate the performance of our relational classi-

fier. We evaluate against all the object annotations inde-

pendent of their occlusion level. We define three sets from

the training set of the dataset [10]. First, we divide the se-

quences that are part of the training set in two sets using

the time labels. The images from the first half of all the

sequences are used for training while the rest are used for

testing, producing two sets with no overlap. Furthermore,

the training set is split in two sets for training and valida-

tion purposes, producing a total of three sets. In our ex-

periments, the training set is used for extracting the pair-

wise relations used to perform KDE in the relational clas-

sifier and to discover relationships. The validation set is

used for learning the combination of the local and the re-

lational classifier. This dataset was obtained using a car-

mounted camera and resembles the settings used for au-

tonomous navigation. Additionally, we run experiments on

the MIT-StreetScenes (MITSS) dataset [1]. Different from

the KITTI benchmark, this dataset was obtained using a

2http://www.ics.uci.edu/ ihler/code/kde.html



Dataset Relations Representation : RF1 Relations Representation : RF2

KITTI benchmark Class-based Homophily Relation-based Homophily Class-based Homophily Relation-based Homophily

Global Near Global Near Global Near Global Near

Set aggre. caut. aggre. caut. aggre. caut. aggre. caut. aggre. caut. aggre. caut. aggre. caut. aggre. caut.

2-3 0.33 0.35 0.32 0.33 0.33 0.35 0.27 0.34 0.32 0.32 0.36 0.34 0.40 0.39 0.37 0.36

4-7 0.31 0.40 0.30 0.29 0.30 0.40 0.28 0.35 0.34 0.43 0.38 0.34 0.44 0.53 0.41 0.49

8+ 0.28 0.36 0.27 0.23 0.26 0.36 0.26 0.30 0.30 0.39 0.37 0.29 0.40 0.51 0.40 0.44

all 0.29 0.38 0.29 0.26 0.28 0.37 0.27 0.32 0.32 0.40 0.37 0.31 0.41 0.50 0.40 0.45

Dataset Relations Representation : RF3 Relations Representation : RF2

MIT StreetScenes Class-based Homophily Relation-based Homophily Class-based Homophily Relation-based Homophily

Global Near Global Near Global Near Global Near

Set aggre. caut. aggre. caut. aggre. caut. aggre. caut. aggre. caut. aggre. caut. aggre. caut. aggre. caut.

2-3 0.71 0.74 0.65 0.58 0.70 0.71 0.62 0.60 0.70 0.69 0.68 0.61 0.67 0.68 0.68 0.66

4-7 0.54 0.65 0.46 0.42 0.49 0.59 0.48 0.50 0.49 0.56 0.50 0.48 0.47 0.55 0.52 0.57

8+ 0.35 0.46 0.30 0.29 0.33 0.45 0.29 0.39 0.33 0.42 0.38 0.34 0.33 0.43 0.39 0.47

all 0.54 0.63 0.47 0.43 0.51 0.59 0.47 0.50 0.51 0.56 0.52 0.48 0.49 0.55 0.53 0.57

Table 1. Mean Average Precision of the Relational Classifier for object detection on the KITTI and MITSS datasets. ( Only using context

to predict the object presence )

consumer camera and offers more viewpoint variability. For

our experiments we divided this dataset in 4 subsets. The

first two quarters were used for training and validation while

the third and fourth quarters were used for testing. We run

experiments on three splits of each dataset and report mean

performance results. In addition, in order to check the be-

havior of the object detector, the relational classifier and the

combination of the two, we split the test set in three subsets.

These subsets are defined based on the number of hypothe-

ses available for the inference stage. The subsets contain

images with [2,3],[4,7] and [8,∞) hypotheses respectively.

Experiment: We reason about object relations as means

for object verification, i.e. to correct errors of the object

detector. We define Object Verification as the task of re-

ranking the set of hypotheses given by a detector in such

a way that the most likely hypotheses get a higher score.

The task of object verification is evaluated procedure used

in Pascal VOC [6]. We report results using mean Average

Precision (mAP) as performance metric.

We report experiments with eight baselines defined by

the combination of three parameters. The first parameter

Neighborhood Scope, indicates how the neighborhood Ni

of a particular object oi is defined based on their relative

location. It is set to “global” if it considers all the objects

despite their location. It is set to “near” if it only considers

the objects within a relative distance t where t is defined as

the median distance of all the spatial relations in the training

set. This parameter represents the Markovian assumption

that some relational methods enforce by only considering

neighboring objects in their spatial vicinity. The second pa-

rameter indicates the type of inference to use which can be

“aggressive” (Eq. 1) or “cautious” (Eq. 4). The last param-

eter Homophily drive covers the possible causes that relate

entities. It can be driven by the class of the object, as in tra-

ditional homophily, or by the relationships that we propose

in this work. We present results using the relation represen-

tations RF1 and RF2 (Sec. 5) for the KITTI dataset. For

the case of MITSS we use representations RF2 and replace

RF1 with RF3 (Sec. 5) due to the lack of annotated object

poses. Table 1 shows the performance of the different base-

lines when only the relational classifier is used, that is, only

Dataset RF1 RF2

KITTI benchmark Class-based Homophily Relation-based Homophily

Global Global

Set Detector [14] aggre. caut. aggre. caut.

2-3 0.65±0.027 0.65±0.022 0.66±0.020 0.66±0.033 0.64±0.017

4-7 0.63±0.010 0.64±0.009 0.66±0.016 0.67±0.017 0.71±0.019

8+ 0.60±0.011 0.59±0.007 0.61±0.004 0.63±0.004 0.68±0.009

all 0.61±0.011 0.61±0.009 0.63±0.007 0.65±0.011 0.68±0.003

Dataset RF3 RF2

MIT StreetScenes Class-based Homophily Class-based Homophily

Global Global

Set Detector [14] aggre. caut. aggre. caut.

2-3 0.74±0.005 0.83±0.007 0.86±0.002 0.79±0.009 0.80±0.011

4-7 0.68±0.005 0.77±0.001 0.81±0.031 0.73±0.004 0.77±0.016

8+ 0.68±0.033 0.69±0.003 0.71±0.044 0.68±0.043 0.70±0.030

all 0.69±0.006 0.77±0.001 0.80±0.028 0.73±0.011 0.76±0.014

Table 2. Mean Average Precision of the top performing base-

lines of the combination of Local [14] and Relational Classifiers

for object detection on the KITTI and MITSS datasets. Note that

the baseline defined by aggressive inference with RF3 relations,

assuming Class-based Homophily in a Global Neighborhood, is a

Things-based version of [23].

Dataset RF3 RF2

KITTI benchmark Class-based Homophily Relation-based Homophily

Global Global

Set Detector [7] aggre. caut. aggre. caut.

all 0.65±0.003 0.68±0.007 0.71±0.007 0.72±0.009 0.75±0.003

Dataset RF3 RF2

MIT StreetScenes Class-based Homophily Class-based Homophily

Global Global

Set Detector [7] aggre. caut. aggre. caut.

all 0.62±0.004 0.66±0.011 0.71±0.012 0.65±0.026 0.69±0.014

Table 3. Mean Average Precision of the top performing baselines

of the combination of Local [7] and Relational Classifiers for ob-

ject detection on the KITTI and MITSS datasets. Note that the

baseline defined by aggressive inference with RF3 relations, as-

suming Class-based Homophily in a Global Neighborhood, is a

Things-based version of [23].

considering contextual information. Table 2 shows the per-

formance of the combination of local and relational classi-

fiers for the top performing baselines. Note that the baseline

defined by aggressive inference with RF3 relations, assum-

ing Class-based Homophily in a Global Neighborhood, is a

Things-based version of [23].

Discussion: Overall, based on the parameters previ-

ously mentioned, the performance of the evaluated algo-

rithms present the following trend: First, and maybe some-

what surprisingly, on average, global neighborhoods pro-

vide higher performance than the near option. Second, on



the scope of a global neighborhood, cautious methods out-

perform their aggressive counterparts. Third, dataset-wise,

Relation-based Homophily performs better in the KITTI

dataset, where camera settings are more constrained. This

may suggest that the method to uncover relationships may

be sensible to changes in viewpoint. Finally, the proposed

cautious scheme boosts the performance of the baselines

[7, 14, 23]. Now we discuss the results in more detail.

Regarding the relations format, the difference in perfor-

mance of RF2 on the different datasets in Table 1 suggests

that RF2 is better suited for working on constrained camera

settings, as in the KITTI dataset. Furthermore, the differ-

ence in performance between RF1 and RF3, shows a weak-

ness of relational methods when relations are defined from,

possibly, unstable attributes. In this case, the relative pose

information used in RF1 may be the cause of its relatively

lower performance.

Regarding the type of inference to use, both Tables 1 and

2, show that cautious reasoning with object relations always

outperforms its aggressive counterpart when exercised on a

global neighborhood. This is supported by mean improve-

ments, over traditional aggressive inference, of 8%, on the

Relational Classifiers (Table 1), and 2.5% on the combina-

tion of Local and Relational classifiers (Table2). In addi-

tion, there is an improvement of 5% and 3% over the base-

lines [14] and [23], respectively.

Related to the alternative notion of homophily, Relation-

based homophily outperforms class-based homophily on

a global neighborhood when using RF2. This is oppo-

site to what is seen with the related RF1 and RF3 where

class-based homophily performs better. It seems that, sim-

ilar to RF2, Relation-based homophily performs better in

constrained settings, with lower viewpoint variability as in

KITTI. In this context, the representation used for the rela-

tions plays a relevant role since the clustering method used

to discover the underlying relationships operates directly

on the attributes of the pairwise relations. Likewise, the

method to discover these underlying relations affects the

inference process, i.e. boundary effects that can be intro-

duced by hard clustering methods as the one employed in

this work. Future work will focus on analyzing the influ-

ence that the selected method for discovering the relation-

ships has on relation-based homophily. The mean boost

in performance of 8.5% on the relational classifier makes

relation-based homophily an appropriate principle in sce-

narios where no local information is available on the un-

known object. Indeed, it is remarkable that the cautious re-

lational classifiers, only using context information, can get

as low as 8% behind the local detector for their top per-

forming cases. Note in Fig. 3 how the baselines based on

cautious inference effectively promote hypotheses that had

been ranked low by the detector.

The change in performance obtained by the local classi-

fier, the object detector, and the relational classifier in the

different subsets of images hints at the scenarios for which

each classifier is better. For the local classifier, its perfor-

mance is at its highest point when a low number of hypothe-

ses is reported and decreases as the number of hypotheses

increases. This represents the scenario with few, possibly

non-overlapping, hypotheses (see Fig. 3 top row). On the

other hand, the relational classifier performs better as the

number of hypotheses increases (see Fig. 3 and Fig. 4). This

proves their “competitive” behavior. For the combination

of the two classifiers, there is a peak in performance in the

second subset of images. It should be noted that the fol-

lowing subset, where performance drops, is the one with

higher number of hypotheses, thus, more likely to contain a

larger proportion of false hypotheses. This suggests that the

combination of classifiers may be weak towards large oc-

currence of false hypotheses. This can be supported by the

fact that there is a true positive - false positive ratio of 0.24

and 0.28 for the [14] baseline on the KITTI and MITSS

datasets, respectively. We see that the combination of the

responses of the local and relational classifiers produces an

average and maximum improvement of 5% and 9%, respec-

tively over the [14] baseline.

For object detection the use of a neighborhood with re-

duced spatial scope is discouraged since it has relatively

lower improvement of 1.3% than when reasoning in global

neighborhoods where a mean improvement of 4.7% was ob-

tained over different relations representations.

Finally, we ran experiments using [7] to generate the ini-

tial object hypotheses and defined RF2 and RF3 relations

between objects. Table 3 shows how results follow a simi-

lar trend as the ones obtained in the other experiments.

7. Conclusions

We showed that cautious inference about object rela-

tions outperforms traditional aggressive inference methods

for object detection. Cautious methods empirically pro-

vided mean improvements of 8% and 2.5% on relational

and combined classifiers, respectively, over its aggressive

counterparts. Furthermore, we have introduced a notion

of relational-homophily that recovers underlying structures

from the observed relations aiming to better understand the

behavior of the related classes of interest and improve infer-

ence. Improvements of 8.5% on purely relational methods

makes relational-homophily a promising principle to use

when local information about the unknown instances is not

available (e.g. in an inpainting scenario). Furthermore, ex-

periments suggest that performing cautious inference paired

with Relation-based homophily with relations in RF2 repre-

sentation is beneficial for more camera constrained settings

such as the ones found in systems for autonomous navi-

gation. Future work will focus on three directions: better

representations for reasoning in 3D space, which typically

outperform methods that operate in 2D; better methods to
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Figure 3. Qualitative results in a Global Neighborhood setting. Confidence scores color coded in jet scale. Note how Cautious Inference

promotes hypotheses with initial low score. (Best viewed in color)

ca b

[2,3] hypotheses/image [4,7] hypotheses/image [8,+) hypotheses/image

Figure 4. Precision-Recall curves for the top 3 ranking baselines on the KITTI dataset for the different image sub-sets based on their

respective number of hypotheses: a) [2,3], b) [4,7] , and c) [8,∞) hypotheses/image respectively.

recover the underlying structures of the relational space de-

fined by the object relations and investigating the generality

of these observations in the context of other object cate-

gories or other application scenarios .
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