

Towards Sign Language Recognition based on Body-Parts Relations.

Marc Martínez Camarena, <u>José Oramas M.</u>, Tinne Tuytelaars KU Leuven September 28th 2015

Introduction

Sign Language

- Hearing-impaired community.
- Low teacher/student ratio.

Introduction

Some terminology

Hand Postures

Hand Gestures

*Images taken from Holz and Wilson, CHI'11.

Problem Statement

Focus from:

Global location of the hands

Problem Statement

Focus from:

Global location of the hands

location of the hands wrt. to other parts of the body

Problem Statement

Motivation

- Signs with similar hand trajectories can be distinguished by the temporal relations between body parts.

Related Work

Focus on Hand Postures & Trajectories

- Chai et al., FG'13.
- Tanghali et al., CVPR'11.
- Pfister et al., ECCV'14.

Chai et al., FG'13.

Exploiting Skeleton Representations

- Wu et al., ICMI'13.
- Papadopoulos et al., MM'14.
- Ellis et al., IJCV'13.
- Hussein et al., IJCAI'13.

Modeling Dynamics of Hand Gestures

- DTW: Rabiner & Juang, 93
- HMM: Elmezain et al., ICPR'08. Papadopoulos et al., MM'14.

Ellis et al., IJCV'13.

Hand Gestures-based Sign Recognition

- Given a set of body joints

 $J = \{j_1, j_2, \dots, j_{11}\}$

- We define the descriptor (*RBPD*) as:

$$RBPD = [\delta_1, \delta_2, ..., \delta_m]$$

where:

 $\delta_i = (j_i - j_h)$ j_h : hand joint.

* This procedure is performed for each frame of the video

Hand Gestures-based Sign Recognition

- Data re-encoding via K-Means

Hand Gestures-based Sign Recognition

- Data re-encoding via K-Means

- Gesture modeling via Hidden Markov Models (HMMs)

- An HMM is trained for each sign class.
- Training observations \rightarrow gesture(sequence of centers).
- # observation symbols == # clusters (K).

Hand Postures-based Sign Recognition

- Hand segmentation

Hand Postures-based Sign Recognition

- Hand segmentation

- Posture description

- Shape context descriptors (Belongie et al, TPAMI'02)
- Bag of words (BoW) encoding (Salton & McGill, 1983)
- Classification via one-vs-all SVM classification (Crammer & Singer et al, JMLR'01)

Coupled Sign Recognition

- Late fusion of gestures/postures responses.

KU LEUVEN

Experimental Settings

• Chalearn (2013) gesture dataset (Escalera et al. ICMI'13 WS)

• 20 sign classes | 27 subjects.

• MSRC-12 dataset (Fothergil et al. CHI'12)

- (No RGBD data)
- 12 gesture classes | 30 subjects.

Experimental Settings

Cross-Validation for:

- Estimating the number of words for BoW.
- Estimating the number of states for each HMM.
- Training the multiclass SVM classifiers used for late fusion.

Hand Gesture-based Sign Recognition (I)

Methods:

Purely spatial

HD : Hand locations. RBPD : Relative location of the hands wrt. to parts of the body.

Hand Gesture-based Sign Recognition (II)

Methods:

Locally-temporal extension

HD-T: Hand locations wrt. torso location in the previous frame. **RBPD-T**: Relative location of the hands wrt. to parts of the body in the previous frame.

HD-T

RBPD-T

Hand Gesture-based Sign Recognition (III) Chalearn (2013) dataset

Discussion:

- HD performance is significantly lower. (especially for sign language setting)
- The temporal extensions (-T) benefit both methods (HD & RBPD) .
- Purely reasoning about hand gestures may not solve sign language recognition.

Coupled Sign Recognition (I)

Chalearn (2013) dataset (focus on RBPD-T)

Coupled Sign Recognition (I)

Chalearn (2013) dataset (focus on RBPD-T)

Discussion:

 Ambiguity between sign classes is clarified when combining postures and gestures.

Coupled Sign Recognition (II)

Chalearn (2013) dataset

	Precision	Recall	F-Score
Wu et al., ICMI'13	0.60	0.59	0.60
Yao et al., CVPR'14	-	-	0.56
Pfister et al., ECCV'14	0.61	0.62	0.62
Ours (<i>RBPD-T based</i>)	0.61	0.62	0.62

* Mean performance values are indicated.

Discussion:

- Improved performance over Wu et al. ICMI'13. (winners of Chalearn 2013 gesture challenge)
- Competitive performance with Pfister et al., ECCV'14. (which focuses on hand postures)

- Considering spatial relations between parts of the body provides richer descriptor for sign language recognition.
- Considering local temporal changes improves sign recognition performance.

Future Work

- Integrate better methods to model hand postures.
- Focus on sign detection/localization.
- Integrate other features of sign language.
 (e.g. language models or facial gestures)
- Integrate recent methods for modeling video dynamics.
 (e.g. VideoDarwin (Fernando et al., CVPR'15))

Questions?

Towards Sign Language Recognition based on Body-Parts Relations.

Marc Martínez Camarena, <u>José Oramas M.</u>, Tinne Tuytelaars KU Leuven September 28th 2015

