

Context-based Reasoning for Object Detection and Object Pose Estimation.

José Oramas M. VISICS, ESAT, KU Leuven April 29th 2015

Outline

- Problem Statement
- Research Question
- Contributions
- Discussion

Thesis

Title:

Context-based Reasoning for Object Detection and Object Pose Estimation.

Supervisor:

- Prof. Tinne Tuytelaars.
- Prof. Luc De Raedt.

Examination Committee:

- Prof. Marie-Francine Moons.
- Prof. Luc Van Gool.
- Prof. Luc Van Eycken.
- Prof. Joseph Vandewalle
- Prof. Ales Leonardis.

Funding:

- DBOF Research Scholarship KUL 3E100864.
- FP7 ERC Grant 240530 COGNIMUND.
- KU Leuven OT Project VASI.

Object Detection

Object Detection

Sample regions (windows) over the image

Object Detection

Evaluate each region (window)

[There is a car | There is no car]

Introduction

Object Detection

Final prediction

Introduction

Object Detection

Driver assistance & Autonomous navigation

 Home
 Gmail
 Calendar
 Reader
 More

 eBack to results

Go to site - View full size

botticelli.jpg (50 kB) www.realclimate.org

Image retrieval

Security & Surveillance

Automatic image acquisition + enhancement

Problem Statement

Object Detection

3D Appearance

- Murase et al., IJCV (1995) .
- Selinger et al., CVIU (1999) .
- Ponce et al., RFIA (2004) .
- Yan et al., ICCV (2007) .
- Song et al., ECCV (2014) .

2D Appearance

- Dalal & Triggs., CVPR (2005).
- Felzenszwalb et al., TPAMI (2010) .
- Fishchler & Elschalager., TC (1973) .
- Viola and Jones, CVPR (2001) .

Object Pose / Viewpoint Estimation

Problem Statement

Challenges

Changes in Illumination

High Occlusions

Low resolution | objects at low scale

The Context Challenge

(Torralba & Oliva, IJCV'03)

The Context Challenge (Torralba & Oliva, IJCV'03)

What is the category of the objects depicted in the following images?

The Context Challenge (Torralba & Oliva, IJCV'03)

What is the category of the objects depicted in the following images?

pedestrian ?

The Context Challenge (Torralba & Oliva, IJCV'03)

What is the object depicted in the following images?

Scene Context

Problem Statement

How to define the context of an object?

Geometric Context

Hoiem et al. ICCV'05

Problem Statement

How to define the context of an object?

Semantic Context

[Car | Building]

Desai et al. ICCV'11

Scene Context

- Oliva & Torralba, ICJV'03.
- Russell et al., NIPS'07.
- Hoiem et al., IJCV'08

Geometric Context

- Hoiem et al., ICCV'05

Local Context

- Perko & Leonardis., CVIU'10.
- Galleguillos et al., CVPR'10.
- Malisiewicz & Efros, NIPS'09.
- Bileschi et al., Ph.D. thesis.

Object Relations Context

- Perko & Leonardis, CVIU'10.
- Desai et al., IJCV'11.
- Antanas et al., Neurocomputing'14

Problem Statement

In this study

Scene Context

Semantic Context (object relations)

Relations between Objects

Natural group behaviors

Man-Made objects in desired/permitted configurations

Exploiting contextual information

Scene Context

Oliva & Torralba., IJCV (2003).

Russell et al. NIPS (2007) .

Hoiem et al., IJCV (2008).

Object Relations Context

Perko & Leonardis., CVIU (2010).

Desai et al., IJCV (2011).

Antanas et al., Neurocomputing (2014).

Research Question:

Can contextual information improve performance of vision tasks?

Main Research Question:

Can contextual information improve performance of vision tasks?

Research Question:

- **R1:** Is contextual information, in the form of relations between objects, useful for object pose estimation?
- R2: Is contextual information, in the form of scene-driven cues, useful for the task of object viewpoint estimation?
- **R3:** To what extent does the nature of the association between objects affects the performance of using relations between objects to improve object detection?

Relations between objects (ICCV'13)

Context-based object pose estimation

$$\theta_i^* = \arg \max_{(\theta_i \in o_i)} (wvRN(o_i|N_i))$$

Contextual [relational] classifier

$$wvRN(o_i|N_i) = rac{1}{Z}\sum_{o_j\in N_i}v(o_i,o_j).w_j$$
 (M

(Mackassy et al. , JMLR 2007)

$$wvRN(\theta_i^+, o_i^+|N_i) = \frac{1}{Z} \sum_{o_j \in N_i} p(\theta_i^+, o_i^+|r_{ij}).w_j$$

Defining Relations between objects

Camera-centered (CC)

Object-centered (OC)

Figure: Pairwise relations between objects from (a) a camera-centered and from (b) an object-centered frame of reference.

Where can another car be located given the car in the center and the expected relative pose between them?

Opposite Pose rz (Front) rz (Front) rx (Right) rx (Right

Figure: Top-view of the distribution of object-centered relations for cars with (a) the same and (b) opposite pose, respectively.

Same Pose

Some results

Ideal Setting

(purely contextual method)

Realistic Setting

Qualitative Results

Figure: Object bounding box is color coded. Notice the difference between the initial pose prediction given by the detector and the context-based prediction.

Research question 1:

Is contextual information, in the form of relations between objects, useful for object pose estimation?

- Purely contextual experiments show that the proposed methods are able to encode information about the orientation of participant objects.
- Combination of local and contextual methods improves initial pose estimation performance.

Scene context (BMVC'14)

- Exploit physical extent of elongated objects (a,b).
- Regions of the scene tend to host objects with particular features (c).

Algorithm pipeline

- a) Object detection.
- b) Scene-driven object proposal generation.
- c) Object hypotheses proposals matching.
- d) Object elongation orientation classification.
- e) Object viewpoint classification.

Quantitative Results (8 viewpoints)

Easy image set (object height>50px)

Full image set (all the objects)

object detector

Quantitative Results (8 viewpoints)

- Continuous Line: object detector prediction.
- Dashed Line: scene-driven object proposals.
- Circle: ground-truth viewpoint.

Research question 2:

Is contextual information, in the form of scene-driven cues, useful for object viewpoint estimation?

- Experiments suggest that scene can effectively serve as a source of contextual information for object viewpoint estimation.
- Combination of scene-driven cues and methods based on intrinsic features produces improvements on object viewpoint estimation performance.

Context-based Object Detection (WACV'14)

Aggressive Inference

How to properly use relations between objects?

Cautious Inference

How to properly use relations between objects?

Relationship-driven association

How objects associate to each other ?

Figure: Category-based association: a) voting, b) density distribution; and Relationship-based association c) voting, d) density distribution. Density distributions from cars on the KITTI dataset.

$$wvRN(o_i|N_i) = \frac{1}{Z} \sum_{o_j \in N_i} v(o_i, o_j) . w_j$$

Only using contextual information

Figure: Mean average precision performance using the detector from [1] to collect object hypotheses.

Combination of Local and Contextual Information

Collecting Hypotheses using [1]

Dataset		RF1		RF2	
KITTI benchmark		Class-based Homophily		Relation-based Homophily	
		Global		Global	
Set	Detector [1]	aggre.	caut.	aggre.	caut.
all	0.61 ± 0.011	0.61 ± 0.009	$0.63 {\pm} 0.007$	0.65 ± 0.011	0.68±0.003
	Dataset	R	F3	R	RF2
мп	Dataset StreetScenes	R Class-based	F 3 Homophily	R Class-base	tF2 d Homophily
мп	Dataset StreetScenes	R Class-based Glo	F 3 Homophily bal	R Class-base Gl	tF2 d Homophily obal
MIT	Dataset StreetScenes Detector [1]	R Class-based Glo aggre.	F 3 Homophily bal caut.	R Class-base Gl aggre.	tF2 d Homophily obal caut.

Table: Mean average precision performance using the detector from [1] to collected object hypotheses.

Collecting Hypotheses using DPM [2]

Dataset		RF3		RF2	
KITTI benchmark		Class-based Homophily		Relation-based Homophily	
		Global		Global	
Set	Detector ^[2]	aggre.	caut.	aggre.	caut.
all	$0.65 {\pm} 0.003$	$0.68 {\pm} 0.007$	0.71 ± 0.007	$0.72 {\pm} 0.009$	$0.75 {\pm} 0.003$
Dataset		RF3		RF2	
	Dataset	R	F3	F	RF2
МІТ	Dataset StreetScenes	Class-based	F 3 Homophily	Class-base	RF2 d Homophily
MIT	Dataset StreetScenes	R Class-based Glo	F 3 Homophily bal	Class-base Gl	RF2 d Homophily lobal
MIT Set	Dataset StreetScenes Detector [2]	Class-based Glo aggre.	F 3 Homophily bal caut.	Class-base Gl aggre.	RF2 d Homophily obal caut.

López et al. ,ICCV WS 2011.
 Felzenszwalb et al. ,TPAMI 2010.

Table: Mean average precision performance using the detector from [2] to collected object hypotheses.

However...

Is there something that can be done to improve recall?

Recovering missed detections

In summary

a) Perform object detection.

b) Recover missed object instances by generating object proposals.

Contribution

- A method to discover higher-order relations between objects.
- Use the modeled relations to recover missed object instances.

Higher order relations between cars marked by color codes

Recovering missed detections

Discovered higher-order relations.

- Top-view of the discovered Higher-order Relations (HOR) between cars in the KITTI dataset.

- Relations are defined from an object-centered perspective.

- Reference object is in the center and colored in black.

- The occurrence likelihood of the related objects is color-coded in jet scale.

Comparison w.r.t. to other methods

Some results

Comparison w.r.t. relation-based methods

Recall vs. number of generated object proposals on the KITTI dataset (IoU=0.5)

CC: camera centered frame of reference OC: object centered frame of reference HOR:Higher-order relations

Recovering missed detections

Some results

Qualitative results

Detector alone

Detector + Proposals

Object annotations | matched object instances | unmatched object instances

Research question 3:

To what extend does the nature of the association between object affects the performance of using relations between objects to improve object detection?

- Using most certain objects as source of contextual information increases the gains in object detection precision brought by contextual information.
- Assuming that objects are associated by underlying relationships increases the performance of relations-based methods.
- Methods that reason about object relations can be effectively used to recover miss detected object instances. As a result, this improves object detection performance in terms or recall.

Lessons Learned

- Collective classification should be used cautiously in vision problems (Chapter 4).
- Object pose / viewpoint estimation is not a purely local problem (Chapter 3 & 5).
- Object relations can be used to improve object detection recall (Chapter 6).

Future Work

- Integration of detailed local models for object categories. (e.g. Xiang et al. 3Ddr'13, Zia et al., CVPR'14, Girshick et al., CVPR'14)
- Perform the prediction of continuous object pose/viewpoint angles.
- Integrate more advanced methods for Collective Classification. (e.g. Statistical Relational Learning (SRL))

Publications

- Fernando B., Gavves, E., Oramas M., J., Ghodrati, A., Tuytelaars, T. Modeling video evolution for action recognition. CVPR 2015.
- Oramas M. J., Tuytelaars T. Scene-driven Cues for Viewpoint Classification of Elongated Object Classes. BMVC 2014.
- Oramas M. J., De Raedt L., Tuytelaars T. Reasoning about object relations for object pose classification. NCCV 2014.
- Oramas M. J., De Raedt L., Tuytelaars T. Towards cautious collective inference for object verification. WACV 2014.
- Antanas L., van Otterlo M., Oramas Mogrovejo J., Tuytelaars T., De Raedt L. There are plenty of places like home: Using relational representations in hierarchies for distance-based image understanding. Neurocomputing 2014.
- Billiet L., Oramas M. J., Hoffmann M., Meert W., Antanas L. Rule-based hand posture recognition using qualitative finger configurations acquired with the Kinect. ICPRAM 2013.
- Oramas M. J., De Raedt L., Tuytelaars T. Allocentric pose estimation. ICCV 2013.
- Antanas L., van Otterlo M., Oramas M. J., Tuytelaars T., De Raedt L. *A relational distance-based framework for hierarchical image understanding.* ICPRAM 2012.
- Antanas L., van Otterlo M., Oramas M. J., Tuytelaars T., De Raedt L. Not far away from home: A relational distance-based approach to understand images of houses. IPL 2010.
- Oramas M., J., Tuytelaars, T. Recovering hard-to-find object instances by sampling context-based object proposals. Submitted to ICCV 2015.
- Martinez-Camarena, M., Oramas M., J., Tuytelaars, T. Towards sign language recognition based on body parts relations. Submitted to ICIP 2015.

Thank you for your attention

Context-based Reasoning for Object Detection and Object Pose Estimation.

José Oramas M. VISICS, ESAT, KU Leuven April 29th 2015

