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How?
• Learn shapes independently

• Learn how to map the learned shapes
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Some history



End-to-End
Steering Prediction

( 2016 - 2017 )



Previous Work ...

End-to-end Steering Prediction1

System

1Heylen et al., “From Pixels to Actions: Learning to Drive a Car with Deep Neural Networks”. WACV’18.

Given an image sequence → Predict a steering angle



Previous Work ...

End-to-end Steering Prediction1

1Heylen et al., “From Pixels to Actions: Learning to Drive a Car with Deep Neural Networks”. WACV’18.

Some Results
Data: Udacity & GTA-V Simulator

Regular only Recovery only Regular + Recovery

bestworst



Nice, but ...

Far from the testing conditions

Training Conditions (simulator) Testing Conditions (KITTI dataset)



Making simulation data 
more realistic

( 2017 - 2018 )



From the virtual world to reality
What?
Given simulated data → Bring it closer to testing conditions

How?
• Domain/image translation

• Generative Adversarial Networks (GANs)1

Goodfellow et al., “Generative Adversarial Nets,” in NIPS 2014.



From GTA-V to realistic images

- Original image examples from GTA-V (input)
- GAN + Wasserstein Loss



Nice but...
Currently it is mostly about changing pixel colours, 
What about the structure? 
(shape of trees, models of cars, building architecture)

input

output



Translating Shapes,
Preserving Style
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Zhu et al., ICCV’17.
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2- Learn a translation function between the domains1.

1Lejeune et al. , "A Data Driven Similarity Measure and Example Mapping Function for General, Unlabelled Data Sets", ECAI'16.
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Proposed Method
Modelling Domain Information
- Learn how to model each domain independently.
    → Through variational autoencoders (VAE)1 

With latent space → 

Applying the Loss 

1D. P Kingma and M. Welling, “Auto-Encoding Variational Bayes,” in arXiv:1312.6114, 2013.



Proposed Method
Shape Translation
- Learn a mapping function between the [shape] domains.
    → Through an extended CycleGAN1. 

→ Applying the Loss 

Zhu, et al. “Unpaired image- to-image translation using cycle-consistent adversarial networks”, ICCV’17.
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Proposed Method
Shape Translation
- Learn a mapping function between the [shape] domains.
    → Through an extended CycleGAN1. 

Where:

→ Applying the Loss 

1Zhu, et al. “Unpaired image- to-image translation using cycle-consistent adversarial networks”, ICCV’17.
2Wang et al., “Multiscale structural similarity for image quality assessment,”  Conf.on Signals, Systems Computers, 2003.

→ favours “good” translations. 

← perceptual similarity2 



Evaluation



Evaluation
Translating digits in synthetic images
Color MNIST dataset1

~ 6.5K images per digit class.

1https://www.wouterbulten.nl/blog/tech/getting-started-with-gans-2-colorful-mnist/

From ‘3’ to ‘1’ From ‘1’ to ‘3’

- Results

Input

Color hist. 
distance

DSSIM
( lambda = 20 ) 

DSSIM
( lambda = 5 ) 

Observations
● The Color loss fails at 

preserving the style

● The DSSIM loss tends 
produce blurry results 
for lambda=20.



Evaluation
Translating digits in real images
SVHN dataset1

~ 7.3K images per digit class.

1Coates et al., “Reading digits in natural images with unsupervised feature learning”, NIPS'11 Workshops.

- Qualitative Results

Input Target classes

Observations
● Overall translation is good.

● For some classes, translation is 
slightly blurry. (e.g. class ‘0’ & ‘6’)
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Take-home Message

• Transferring the structure while preserving the 
style is possible → within simple scenarios.

• Background clutter poses a challenge on this type 
of translation → further experimentation is required.



There is Hope



Here at ICIP’19 ! ...

1 Longman & Ptucha., “Embedded cyclegan for shape-agnostic image-to-image translation”, ICIP’19.

Embedded CycleGAN for Shape-agnostic Translation1

Proposed Model Some Results



Follow-up Work ...
Unpaired Shape Translation1

1 Wang et al., “Unsupervised shape transformer for image translation and cross-domain retrieval”. ArXiv:12812.02134 .

Clothing translation Face translation



Follow-up Work ...
Unpaired Shape Translation1

1 Wang et al., “Unsupervised shape transformer for image translation and cross-domain retrieval”. arXiv:12812.02134 .

Clothing translation Face translation

Cross-domain → 
image retrieval



Contact
José Oramas M.
Email:  jose.oramas@esat.kuleuven.be
Website:  http://homes.esat.kuleuven.be/~joramas
Twitter:  @jaom7



Questions?
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