

Towards Object Shape Translation Through Unsupervised Generative Deep Models

Lies Bollens, Tinne Tuytelaars & <u>José Oramas M.</u> KU Leuven, ESAT-PSI September 25th, 2019

In a nutshell ...

What?

Translating shape, preserving style (colour, texture, etc)

e.g. across digit classes

In a nutshell ...

What?

Translating shape, preserving style (colour, texture, etc)

e.g. across digit classes

KU LEUVEN

How?

- Learn shapes independently
- Learn how to map the learned shapes

Some history

End-to-End Steering Prediction (2016 - 2017)

Previous Work ...

End-to-end Steering Prediction¹

Given an image sequence \rightarrow Predict a steering angle

Previous Work ...

End-to-end Steering Prediction¹

Some Results

Data: Udacity & GTA-V Simulator

best

¹Heylen et al., "From Pixels to Actions: Learning to Drive a Car with Deep Neural Networks". WACV'18.

Nice, but ...

Training Conditions (simulator)

Testing Conditions (KITTI dataset)

Far from the testing conditions

Making simulation data more realistic (2017 - 2018)

From the virtual world to reality

What?

Given simulated data \rightarrow Bring it closer to testing conditions

Grand Theft Auto V

Example from the KITTI dataset

KU LEUVEN

How?

- Domain/image translation
- Generative Adversarial Networks (GANs)¹

From GTA-V to realistic images

- Original image examples from GTA-V (input)
- GAN + Wasserstein Loss

Nice but...

Currently it is mostly about changing pixel colours, **What about the structure?**

(shape of trees, models of cars, building architecture)

output

Translating Shapes, Preserving Style

Related Work

Neural Style Transfer

Zhu et al., ICCV'17.

- Gatys et al., CVPR'16.
- Zhu et al., ICCV'17.
- Luan et al., CVPR'17.
- Mechrez et al., BMVC'17.
- Wang et al., CVPR'17
- Liu et al., NPAR'17,
- Dumoulin et al., ICLR'17.
- Chen et al., CVPR'17.
- Li et al. CVPR'17.
- Zhang et al., arXiv:1703.06953.
- Jing et al., ECCV'18.
- Jing et al., arXiv:1705.04058.

Related Work

Neural Style Transfer

- Gatys et al., CVPR'16.
- Zhu et al., ICCV'17.
- Luan et al., CVPR'17.
- Mechrez et al., BMVC'17.
- Wang et al., CVPR'17
- Liu et al., NPAR'17,
- Dumoulin et al., ICLR'17.
- Chen et al., CVPR'17.
- Li et al. CVPR'17.
- Zhang et al., arXiv:1703.06953.
- Jing et al., ECCV'18.
- Jing et al., arXiv:1705.04058.

- Jaderberg et al., NIPS'15.
- Lee et al., NIPS'18.
- Lin et al., CVPR'18.

Lin et al., CVPR'18.

How? (notion) 1- Learn how to model each domain independently.

How? (notion)

- 1- Learn how to model each domain independently.
- 2- Learn a translation function between the domains¹.

How? (notion)

- 1- Learn how to model each domain independently.
- 2- Learn a translation function between the domains.

Modelling Domain Information

- Learn how to model each domain independently.
 - \rightarrow Through variational autoencoders (VAE)¹

Modelling Domain Information

- Learn how to model each domain independently.
 - \rightarrow Through variational autoencoders (VAE)¹

Modelling Domain Information

- Learn how to model each domain independently.
 - \rightarrow Through variational autoencoders (VAE)¹

KU LEUVEN

With latent space $\rightarrow z \sim Enc(x) = q(z|x)$

¹D. P Kingma and M. Welling, "Auto-Encoding Variational Bayes," in arXiv:1312.6114, 2013.

Modelling Domain Information

- Learn how to model each domain independently.
 - \rightarrow Through variational autoencoders (VAE)¹

With latent space $\rightarrow z \sim Enc(x) = q(z|x)$

Applying the Loss

$$\mathcal{L}_{VAE} = -\mathbb{E}_{q(z|x)} \left[\log p(x|z) \right] + \mathcal{D}_{KL} \left(q(z|x) || p(z) \right)$$

KU LEUVEN

¹D. P Kingma and M. Welling, "Auto-Encoding Variational Bayes," in arXiv:1312.6114, 2013.

Shape Translation

- Learn a mapping function between the [shape] domains. \rightarrow Through an extended CycleGAN^{1.}

→ Applying the Loss $\mathcal{L}=\mathcal{L}_{GAN}(Gen_A, Dis_A)+\mathcal{L}_{GAN}(Gen_B, Dis_B)$ $+\lambda_{cycle} * \mathcal{L}_{cyc}(Gen_A, Gen_B)$ $+\lambda_{sim} * \mathcal{L}_{sim}(x, y, Gen_A, Gen_B)$

KUI

Shape Translation

- Learn a mapping function between the [shape] domains. \rightarrow Through an extended CycleGAN^{1.}

→ Applying the Loss $\mathcal{L} = \mathcal{L}_{GAN}(Gen_A, Dis_A) + \mathcal{L}_{GAN}(Gen_B, Dis_B) + \lambda_{cycle} * \mathcal{L}_{cyc}(Gen_A, Gen_B) + \lambda_{sim} * \mathcal{L}_{sim}(x, y, Gen_A, Gen_B)$

KUI

Where:

$$\mathcal{L}_{GAN}(Gen_A, Dis_A) = \mathbb{E}_{x \in dom(A)} \left[log(Dis_A(x)) \right] \\ + \mathbb{E}_{y \in dom(B)} \left[log(1 - Dis_A(Gen_A(y))) \right]$$

 \rightarrow ensures the mapping between latent spaces is accurate.

Zhu, et al. "Unpaired image- to-image translation using cycle-consistent adversarial networks", ICCV'17.

Shape Translation

- Learn a mapping function between the [shape] domains. \rightarrow Through an extended CycleGAN^{1.}

→ Applying the Loss $\mathcal{L} = \mathcal{L}_{GAN}(Gen_A, Dis_A) + \mathcal{L}_{GAN}(Gen_B, Dis_B) + \lambda_{cycle} * \mathcal{L}_{cyc}(Gen_A, Gen_B) + \lambda_{sim} * \mathcal{L}_{sim}(x, y, Gen_A, Gen_B)$

KUL

Where:

$$\mathcal{L}_{cyc} = \mathbb{E}_{x \in dom(A)} \left[||Gen_B(Gen_A(x)) - x||_1 \right] \\ + \mathbb{E}_{y \in dom(B)} \left[||Gen_A(Gen_B(y)) - y||_1 \right]$$

 $\rightarrow\,$ ensures the cycle consistency to hold.

Zhu, et al. "Unpaired image- to-image translation using cycle-consistent adversarial networks", ICCV'17.

Shape Translation

- Learn a mapping function between the [shape] domains. \rightarrow Through an extended CycleGAN^{1.}

→ Applying the Loss $\mathcal{L} = \mathcal{L}_{GAN}(Gen_A, Dis_A) + \mathcal{L}_{GAN}(Gen_B, Dis_B) + \lambda_{cycle} * \mathcal{L}_{cyc}(Gen_A, Gen_B) + \lambda_{sim} * \mathcal{L}_{sim}(x, y, Gen_A, Gen_B)$

KU L

Where:

$$\mathcal{L}_{sim}(x, y, Gen_A, Gen_B) = \mathbb{E}_{x \in dom(B)} d(x, Gen_A(x)) + \mathbb{E}_{y \in dom(A)} d(y, Gen_B(y))$$

\rightarrow favours "good" translations.

Shape Translation

- Learn a mapping function between the [shape] domains. \rightarrow Through an extended CycleGAN^{1.}

 $\rightarrow \text{Applying the Loss}$ $\mathcal{L} = \mathcal{L}_{GAN}(Gen_A, Dis_A) + \mathcal{L}_{GAN}(Gen_B, Dis_B)$ $+ \lambda_{cycle} * \mathcal{L}_{cyc}(Gen_A, Gen_B)$ $+ \lambda_{sim} * \mathcal{L}_{sim}(x, y, Gen_A, Gen_B)$

Where:

$$\mathcal{L}^{SSIM}(x,y) = \frac{1}{N} \sum_{p=1}^{N} (1 - SSIM(x_p, y_p)) \leftarrow \text{perceptual similarity}^2$$

\rightarrow favours "good" translations.

¹Zhu, et al. "Unpaired image- to-image translation using cycle-consistent adversarial networks", ICCV'17. ²Wang et al., "Multiscale structural similarity for image quality assessment," Conf.on Signals, Systems Computers, 2003.

Translating digits in synthetic images

Color MNIST dataset¹ ~ 6.5K images per digit class.

- Results

Input

DSSIM

DSSIM

From '3' to '1' From '1' to '3' Color hist. distance (lambda = 20)(lambda = 5)

Observations

- The Color loss fails at preserving the style
- The DSSIM loss tends produce blurry results for lambda=20.

Translating digits in real images

SVHN dataset¹

~ 7.3K images per digit class.

- Qualitative Results

Observations

- Overall translation is good.
- For some classes, translation is slightly blurry. (e.g. class '0' & '6')

¹Coates et al., "Reading digits in natural images with unsupervised feature learning", NIPS'11 Workshops.

Translating digits in real images

SVHN dataset¹

~ 7.3K images per digit class.

- Quantitative Results

Use classification performance as a proxy metric

target class	(a)	(b)	(c)	(d)
0	96.39	85.09	65.95	75.68
1	97.94	98.47	97.71	92.50
2	95.61	95.64	92.74	95.81
3	92.68	95.91	93.29	95.40
4	96.23	96.04	93.80	91.97
5	94.80	89.77	79.58	84.62
6	95.70	88.67	74.25	81.49
7	94.06	94.95	84.37	89.47
8	93.07	86.57	73.41	82.28
9	94.98	89.34	75.09	85.06
Avg.	95.46	93.47	86.51	89.27

Classification performance from:

- a) Original SVHN test set.
- b) Images reconstructed by the VAEs.
- c) Translated Images from class '1'.
- d) Translated Images from class '2'.

KU LEU

Translating digits in real images

SVHN dataset¹

~ 7.3K images per digit class.

- Quantitative Results

Use classification performance as a proxy metric

target class	(a)	(b)	(c)	(d)
0	96.39	85.09	65.95	75.68
1	97.94	98.47	97.71	92.50
2	95.61	95.64	92.74	95.81
3	92.68	95.91	93.29	95.40
4	96.23	96.04	93.80	91.97
5	94.80	89.77	79.58	84.62
6	95.70	88.67	74.25	81.49
7	94.06	94.95	84.37	89.47
8	93.07	86.57	73.41	82.28
9	94.98	89.34	75.09	85.06
Avg.	95.46	93.47	86.51	89.27

Classification performance from:

- a) Original SVHN test set.
- b) Images reconstructed by the VAEs.
- c) Translated Images from class '1'.
- d) Translated Images from class '2'.

Observations

• Performance is not uniform over the classes.

Translating digits in real images

SVHN dataset¹

~ 7.3K images per digit class.

- Quantitative Results

Use classification performance as a proxy metric

target class	(a)	(b)	(c)	(d)
0	96.39	85.09	65.95	75.68
1	97.94	98.47	97.71	92.50
2	95.61	95.64	92.74	95.81
3	92.68	95.91	93.29	95.40
4	96.23	96.04	93.80	91.97
5	94.80	89.77	79.58	84.62
6	95.70	88.67	74.25	81.49
7	94.06	94.95	84.37	89.47
8	93.07	86.57	73.41	82.28
9	94.98	89.34	75.09	85.06
Avg.	95.46	93.47	86.51	89.27

Classification performance from:

- a) Original SVHN test set.
- b) Images reconstructed by the VAEs.
- c) Translated Images from class '1'.
- d) Translated Images from class '2'.

Observations

- Performance is not uniform over the classes.
- In some cases it is as good as on the original images.

Translating digits in real images

SVHN dataset¹

~ 7.3K images per digit class.

- Quantitative Results

Use classification performance as a proxy metric

target class	(a)	(b)	(c)	(d)
0	96.39	85.09	65.95	75.68
1	97.94	98.47	97.71	92.50
2	95.61	95.64	92.74	95.81
3	92.68	95.91	93.29	95.40
4	96.23	96.04	93.80	91.97
5	94.80	89.77	79.58	84.62
6	95.70	88.67	74.25	81.49
7	94.06	94.95	84.37	89.47
8	93.07	86.57	73.41	82.28
9	94.98	89.34	75.09	85.06
Avg.	95.46	93.47	86.51	89.27

Classification performance from:

- a) Original SVHN test set.
- b) Images reconstructed by the VAEs.
- c) Translated Images from class '1'.
- d) Translated Images from class '2'.

Observations

- Performance is not uniform over the classes.
- In some cases it is as good as on the original images.
- Low translations performance seems to be correlated with weak domain modelling.

Translating digits in real images

SVHN dataset¹

~ 7.3K images per digit class.

- Quantitative Results

Use classification performance as a proxy metric

target class	(a)	(b)	(c)	(d)
0	96.39	85.09	65.95	75.68
1	97.94	98.47	97.71	92.50
2	95.61	95.64	92.74	95.81
3	92.68	95.91	93.29	95.40
4	96.23	96.04	93.80	91.97
5	94.80	89.77	79.58	84.62
6	95.70	88.67	74.25	81.49
7	94.06	94.95	84.37	89.47
8	93.07	86.57	73.41	82.28
9	94.98	89.34	75.09	85.06
Avg.	95.46	93.47	86.51	89.27

Classification performance from:

- a) Original SVHN test set.
- b) Images reconstructed by the VAEs.
- c) Translated Images from class '1'.
- d) Translated Images from class '2'.

Observations

- Performance is not uniform over the classes.
- In some cases it is as good as on the original images.
- Low translations performance seems to be correlated with weak domain modelling.

Take-home Message

- Transferring the structure while preserving the style is possible → within simple scenarios.
- Background clutter poses a challenge on this type of translation → further experimentation is required.

There is Hope

Here at ICIP'19 ! ...

Embedded CycleGAN for Shape-agnostic Translation¹

Real

Some Results

¹ Longman & Ptucha., "Embedded cyclegan for shape-agnostic image-to-image translation", ICIP'19.

Follow-up Work ...

Unpaired Shape Translation¹

Clothing translation

Face translation

¹ Wang et al., "Unsupervised shape transformer for image translation and cross-domain retrieval". ArXiv:12812.02134 .

Follow-up Work ...

Unpaired Shape Translation¹

Clothing translation

Face translation

KU LEUVEN

Cross-domain → image retrieval

¹ Wang et al., "Unsupervised shape transformer for image translation and cross-domain retrieval". arXiv:12812.02134 .

Contact

José Oramas M.

Email: jose.oramas@esat.kuleuven.be Website: http://homes.esat.kuleuven.be/~joramas Twitter: @jaom7

Questions?

Towards Object Shape Translation Through Unsupervised Generative Deep Models

Lies Bollens, Tinne Tuytelaars & <u>José Oramas M.</u> KU Leuven, ESAT-PSI September 25th, 2019

