KU LEUVEN

erc

Scene-driven Cues for **Object Viewpoint Estimation**

José Oramas M., Tinne Tuytelaars

Abstract

- Generate scene consistent object proposals to validate the appearance-based hypotheses predicted by an object detector.
- Use object elongation orientation classification as a intermediate step prior to object viewpoint estimation.

Detection:

a) Object Detection

Using the detectors from [1,2,3], we collect a set of object hypotheses:

$$o = \{o_1, o_2, \dots, o_n\}$$

where

$$o_i = (s_i, b_i, \alpha_i)$$

 $b_i = (x_{1i}, y_{1i}, x_{2i}, y_{2i})$

 S_i : detection score.

- α_i : object viewpoint.
- b_i : object bounding box.

b) Scene-driven object proposal generation

Motivation

- Object viewpoint/pose estimation has been traditionally addressed from a very local perspective based on object-driven features.
- There are certain regions in the scene that are more likely to host object with specific features such as class, size, viewpoint, etc.
- The orientation of the elongation of the object gives a strong cue about its viewpoint.

Algorithm

- a) Object detection.
- **b)** Scene-driven object proposal generation.
- c) Object hypotheses proposals matching.
- **d)** Object elongation orientation classification.
- e) Object viewpoint classification.

Generate a set of object proposals:

$$o' = \{o'_1, o'_2, ..., o'_n\}$$
 where $o' = \Omega(sc)$

Scene-consistency is enforced in 4 ways:

1) Ground-plane

- There is a ground-plane that supports the objects of interest. (Inspired by [4]).
- Generate 3D proposals that can be physically in the scene.

2) History of 3D Objects

- Start from a set of ground-truth 3D objects.
- Uniformely sample the distribution $p(X, Z, \theta)$
- defined by their location and pose.
- Project 3D proposals to the image space.

$$o' = \Omega(scene)$$

3) History of 2D Objects

- Start from a set of ground-truth 2D objects.
- Uniformely sample the distribution $p(x, y, w, h, \alpha)$ defined by its 2D location, width, height and viewpoint.

4) History of 2D Hypotheses

- Similar to previous case.
- Start from a set of hypotheses collected with an object detector.

c) Object hypotheses - proposals matching

For each hypothesis O_i we find its closest proposal O'_i using the intersection over union criterion from PASCAL VOC .

d) Object elongation orientation classification

For each pair (o_i, o'_i) , compute the descriptor:

$$d_i = (rw, rh, rx, ry, \alpha')$$
 where $rw = |\frac{w'}{w}|$ $rh = |\frac{h'}{h}|$ $rx = |\frac{x'-x}{w}|$ $ry = |\frac{y'-y}{h}|$

We focus on a smaller set of K/2 viewpoints

-> Elongation orientation \mathcal{E}_i of an object

 $\hat{\varepsilon}_i = \arg_{\varepsilon_k} \max p(\varepsilon_k | d_i) = \arg_{\varepsilon_k} \max p(d_i | \varepsilon_k) p(\varepsilon_k)$

e) Object viewpoint classification

The viewpoint of an object is estimated as the late fusion of: Object detector response: (α_i, s_i) Elongation classifier response: $(\varepsilon_i, \lambda_i)$

Settings

Dataset :

- KITTI object detection benchmark [5].

Experiments

- Viewpoint-aware DPM detector from [1,2] (8 viewpoints). - DPM detector from [3] (No viewpoint information).

coupled response

 $r_i = [\alpha_i, s_i, \varepsilon_i, \lambda_i]$

the viewpoint of the object is classified as:

 $\hat{\alpha}_i = \arg_{\alpha_k} \max p(r_i | \alpha_k) p(\alpha_k)$

References

[1] A. Geiger et al., NIPS 2011. [2] R. Lopez et al., WS@ICCV 2011. [3] P. Felzenszwalb et al., TPAMI 2010. [4] D. Hoiem et al., CVPR 2006. [5] A Geiger et al., CVPR 2012.

Elongation Orientation Classification

Viewpoint Classification

	Geiger et al. [1]		Lopez et al. [2]		Felzenswalb et al. [3]	
Method	Easy Set	Full Set	Easy Set	Full Set	Easy Set	Full Set
Local detector	0.69	0.68	0.42	0.46		
GroundPlane	0.50	0.52	0.69	0.57	0.72	0.64
Hist3DObjects	0.39	0.41	0.57	0.53	0.54	0.53
Hist2DObjects	0.40	0.39	0.46	0.43	0.53	0.51
Hist2DHypotheses	0.41	0.42	0.61	0.49	0.34	0.34

	Geiger e	t al. [1]	Lopez et al. [2]		
Method	Easy Set	Full Set	Easy Set	Full Set	
Local detector	0.38	0.43	0.38	0.36	
GroundPlane	0.44	0.45	0.50	0.42	
Hist3DObjects	0.46	0.43	0.55	0.48	
Hist2DObjects	0.42	0.39	0.43	0.38	
Hist2DHypotheses	0.45	0.42	0.47	0.39	

Conclusions

- Scene-driven object elongation orientations can assist purely appearancebased viewpoint classifiers.
- There are relatively simple cues in the scene that can bring improvement for object viewpoint estimation.
- Coarse 3D scene-level reasoning, apart from context, is beneficial.