

What if A.I. systems could explain themselves better?

(Improving feedback capabilities of deep models)

José Oramas M., Kaili Wang, Tinne Tuytelaars

Abstract

- Focus on provinding richer visually-descriptive predictions.
- Interpretation: visualize a small set of internal network features relevant for the classes of interest.
- Explanation: extend the model prediction with visualizations highlighting the response of the identified relevant features.
- Design an objective evaluation protocol for visual explanations through a controlled dataset.

Motivation

- Methods that provide their train of thought as part of their output are more likely to be trusted and adopted by end users.
- Current methods for model interpretation are exhaustive or prone to subjectivity and noise. [1]
- Current evaluation protocols for visual explanation rely on user studies or proxy tasks. [5]

Algorithm

- 1) Identify relevant features for the classes of interest.
- 2) Generate model interpretation visualizations
- 3) Enrich model prediction

1) Identify relevant features for the classes of interest

Given a pre-trained model ${\cal F}$ for ${\cal C}$ classes of interest.

- Pass every image through the model.
- Collect internal activation response $x_i \in \mathbb{R}^m$ for every image i.
- Define the data matrix $X \in \mathbb{R}^{m \times N}$
- Define the binary label matrix $L {=} [l_1, l_2, ..., l_N]$ with $L {\in} \mathbb{R}^{C {\times} N}$
- Identify the subset W^* of relevant features for every class j

$$W^* = argmin_W \ ||X^TW - L^T||_F^2$$

$$subject \ to: \ ||w_j||_1 \le \mu \ , \ \forall_j = 1,...,C$$

$$(\mu\text{-LASSO problem })$$
 where:

 $W{=}[w_1, w_2, ..., w_C]$ and μ : sparsity parameter

2) Generate model interpretation visualizations

For every identified relevant feature

- Select the top (100) images with highest response.
- Crop each selected image using the receptive field of the feature.
 (centered on the pixel of highest response)
- Scale all the image crops to a common size.
- visual interpretation image --> crop the pixel-wise average.

Some examples

Observations

- Descriptive features of the classes of interest are identified.
- Identified features either focus on object features, e.g. color, shape, etc., or on the context, e.g. vegetation, buildings, etc.

3) Enrich model prediction

- Given a model prediction $\hat{j}=F(I)$ for the input image I
- Compute the filter-wise reponse x_i during the forward pas
- Compute the response $r_i^j = (w_i \circ x_i)$ using the Hadamard product \circ
- Select the features with strongest contribution to prediction
 - (i.e. layer/filter pairs (p^*,q^*) with maximum response in $\ r_i^{\jmath}$)
- Generate a heatmap visualization of each feature.

(e.g. via deconveNet+ guided backprogation[3])

model prediction

visual explanation

Some generated visual explanations

Evaluation

Measuring the importance of the identified relevant features

- Changes in mean classification accuracy (mCA) as the identified relevant filters are ablated
- Ablating filters with higher relevance produces a bigger drop in performance.

Impact on visual quality

Observations

At lower layers: attenuates grid-like artifacts from deconvNet methods.

At higher layers: provides more precise visualizations than upsampled activation maps.

A novel protocol for the objective evaluation of visual explanations

- Focus on a problem where the discriminative feature between classes can be controlled.
- Design a dataset where the regions to be highlighted by the explanation are pre-defined.

Protocol **Proposed dataset** Generate GT-masks for the discriminative regions. **Quantitative results** - Threshold the visual explanation heatmaps. - Measure pixel-level interesection over union (IoU). Deconv+GB, Springenberg et al. (2015) - Compute mean performance over different heatmap threshold values. Observations - Our method effectively identifies the pre-defined Deconv+GB, Springenberg et al. (2015) Grad-CAM, Das et al. (2016) discriminative features. - Our explanations highlight these features and have a better balance between coverage and level of detail **Qualitative results** Generated interpretations Upsamp. Grad CAM Grad CAM Grad CAM++ Grad CAM++ Ours.

- Our explanations highlight these features and have a better balance between coverage and level of detail - Our explanations highlight these features and have a better balance between coverage and level of detail - Our explanations highlight these features and have a better balance between coverage and level of detail - Our explanations highlight these features and have a better balance between coverage and level of detail - Our explanations highlight these features and have a better balance between coverage and level of detail - Our explanations highlight these features and have a better balance between coverage and level of detail - Our explanations highlight these features and have a better balance between coverage and level of detail - Our explanations highlight these features and have a better balance between coverage and level of detail - Our explanations highlight these features and have a better balance between coverage and level of detail - Our explanations highlight these features and have a better balance between coverage and level of detail - Our explanations highlight these features and have a better balance between coverage and level of detail - Our explanations highlight these features and level of detail - Our explanations highlight these features and level of detail - Our explanations highlight these features and level of detail - Our explanations highlight these features and level of detail - Our explanations highlight these features and level of detail - Our explanations highlight these features and level of detail - Our explanations highlight these features and level of detail - Our explanations highlight these features and level of detail - Our explanations highlight these features and level of detail - Our explanations highlight these features and level of detail - Our explanations highlight these features and level of detail - Our explanations highlight these features and level of detail - Our explanations highlight these features and level of detail - Our explana

References

- [1] Bau et al., CVPR 2017.
- [2] Russakovsky et al., IJCV 2015.
- [3] Springenberg et al., ICLR 2015.[4] Simo-Serra et al., CVPR 2015.
- [5] Zhou et al., ICLR 2015.

Conclusions

- The proposed method enriches the prediction of a deep neural network by indicating the visual features that contributed to such prediction.
- Our method effectively identifies relevant features encoded by the model and allows interpretation of such features through average feature visualizations.
- The proposed evaluation protocol allows for objective evaluation of methods for visual explanation of deep models.