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Abstract 3) Enrich model prediction

e Focus on provinding richer visually-descriptive predictions.
e Interpretation: visualize a small set of internal network features
relevant for the classes of interest.

e Explanation: extend the model prediction with visualizations
highlighting the response of the identified relevant features.

e Design an objective evaluation protocol for visual explanations
through a controlled dataset.

- Given a model prediction j=F(I) for the input image I
- Compute the filter-wise reponse &;during the forward pas
- Compute the response r;=(w; o z;) using the Hadamard product 0
- Select the features with strongest contribution to prediction .
(i.e. layer/filter pairs (p*,¢*) with maximum response in 77 )
- Generate a heatmap visualization of each feature.
( e.g. via deconveNet+ guided backprogation[3] )
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Motivation

e Methods that provide their train of thought as part of their output
are more likely to be trusted and adopted by end users.

® Current methods for model interpretation are exhaustive or prone
to subjectivity and noise. [1] Wi

e Current evaluation protocols for visual explanation rely on user —-b
studies or proxy tasks. [5] e o

Some generated visual explanations

Predicted class: tiger |
Predicted class: Vancouver

Algorithm

1) Identify relevant features for the classes of interest.

| ImageNet-Cats [2] Fashion-144k[4]

2) Generate model interpretation visualizations

B (Evlustion

Measuring the importance of the identified relevant features

1) Identify relevant features for the classes of interest ! Allselected
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- Pass every image through the model. ”‘i _ _ Z 7/ e oo e e random
- Collect internal activation response x; €ER"" for every image 1. Hagee — it Imageliet
- Define the data matrix m X - Changes in mean classification accuracy (mCA) as the identified relevant filters are ablate
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- Define the binary label matrix L=[l1, 1o, ...,1x] with LeREXN - Ablating filters with higher relevance produces a bigger drop in performance.

- ldentify the subset TW™*of relevant features for every class 9 Impact on visual quality

W* = argminw || X' W — LT||%

Observations

subject to: ||w;li <p,V;,=1,...,C
( LL-LASSO problem )

At lower layers: attenuates grid-like
artifacts from deconvNet methods.

89 + Auodag  dep oy dwesdp

where: At higher layers: provides more precise

visualizations than upsampled
activation maps.

SN0

W=[w1,w2,...,wc] and [l : sparsity parameter

2) Generate model interpretation visualizations A novel protocol for the objective evaluation of visual explanations

- Focus on a problem where the discriminative feature between classes can be controlled.

For every identified relevant feature _ , = s | |
- Design a dataset where the regions to be highlighted by the explanation are pre-defined.

- Select the top (100) images with highest response.

- Crop each selected image using the receptive field of the feature. Proposed dataset Protocol
( centered on the pixel of highest response ) o - Generate GT-masks for the discriminative regions.  quantitative results
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