

Abstract

- Exploit capabilities of well-studied model explanation and frequent-itemset mining methods.
- Identify relevant units by mining units that contribute to visual explanations.
- Pin-point class-specific and class-shared relevant units.

Background

Model Explanation: Justify the predictions made by a model **Model Interpretation**: What has a model actually learned?

Proposed Method

1- Patch Extraction

Visual Explanation are generated per input via Grad-CAM [1]

Extracting highlighted patches from visual explanation.

Interpreting Convolutional Neural Networks By Explaining Their Predictions Toon Meynen, Hamed Behzadi-Khormouji, José Oramas University of Antwerp, imec-IDLab

2- Transaction Database Generation

element shows the predicted class label.

Unit 0	Unit 1	Unit 2	•••	Unit N-1	Unit N
123	405	34		193	Bird
43	34	481	•••	193	Bird
24	193	34	•••	403	Dog
512	43	193	•••	405	Car

- **3 Frequent Itemset & Association Rule Mining**
- Applying eclat algorithm [2]:
- The transactions of each class \rightarrow Identifying relevant classspecific units.
- shared units.

34,193 —> Bird, Dog 193,512 —> Car

Fig 1. Proposed Deep Model Interpretation Method.

Converting each visual patch into a N discreet values. The first N-1 element shows indices of internal units, and the last

The whole transaction dataset \rightarrow Identifying relevant class-

Quantitative Results

Models/Methods	Ours-5 Acc. / avg. perturb.	Ours-10 Acc. / avg. perturb.	[6] Acc. / avg. perturb.	Random Acc. / avg. perturb.	Baseline Acc. / avg. perturb.
VGG16	55.17%±0.20/6.79	45.67%±0.20/10.20	50.53%±0.20/5.40	71.39%±0.17/10.00	71.59%±0.17/0.00
ResNet50	71.11% ±0.17 / 6.79	68.63% ±0.18/10.20	69.74% ±0.18 / 5.44	76.08% ±0.16 / 10.00	76.13%±0.16/0.00

Qualitative Results

Conclusion

predictions.

Acknowledgments

This Project is partially supported by the UAntwerp BOF DOCPRO04 Project 41612(id) and FWO project G0A4720N.

References

[1] Selvaraju et al., "Grad-CAM: Visual Explanations from Deep Networks via Gradientbased Localization", IJCV 2019.

[2] Zaki, Mohammed Javeed, et al. "New algorithms for fast discovery of association rules" *KDD* 1997.

unec

Evaluation

Visual patterns from class-shared (L) & class-specific units (R)

We propose an interpretation method to identify class-specific and class-shared relevant units by mining explanations of its